В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
muslima2003
muslima2003
18.07.2022 01:55 •  Математика

Решить (только подробнее) для векторов a и b известно, что |a+b|=|a -b|. найдите угол между векторами a и b.

Показать ответ
Ответ:
Stepan0305
Stepan0305
24.07.2020 20:00
Так как для любого вектора A, |A|²=A·A, то по условию
(A+B)·(A+B)=(A-B)·(A-B)
A²+2A·B+B²=A²-2A·B+B²
A·B=0, т.е. скалярное произведение равно 0, а это значит, векторы перпендикулярны.

Можно доказать по-другому, еще проще. Если сложить векторы A и B по правилу параллелограмма, то A+B - одна диагональ этого параллелограмма, а A-B - вторая диагональ. Если в параллелограмме диагонали равны, то он - прямоугольник. Значит векторы A и B, образующие его стороны -  перпендикулярны.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота