Решение Поскольку пирамида правильная, то в ее основании лежит правильный четырехугольник - квадрат. Кроме того, высота пирамиды проецируется в центр квадрата. Таким образом, катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды. Найдем половину стороны основания: а/2=√(l²-h²) = √(13²-12²) = √25 = 5, а = 10. Площадь поверхности S = Sбок + Soсн = 1/2*4a*l + a*a = 2*10*13 + 10*10 = 260 + 100 = 360
На координатной прямой отметим нули каждого модуля, после чего прямая разобьется на 4 интервала. На каждом интервале определим знаки каждого модульного выражения. Дальше для кажого интервала будем раскрывать модуль соответственно со знаком из интервала.
1) Интервал (-∞; -2] - (x + 2) -x - (x - 2) = 4 -x - 2 - x - x + 2 = 4 -3x = 4 x = -4/3 (не входит в интервал)
2) Интервал (-2;0] (x + 2) - x - (x - 2) = 4 x + 2 - x - x + 2 = 4 -x + 4 = 4 -x = 0 ⇔ x = 0 (имеется в интервале)
3) Интервал (0; 2] (x + 2) + x - (x - 2) = 4 x + 2 + x - x + 2 = 4 x + 4 = 4 x = 0 (не входит в интервал)
4) Интервал (2; ∞) (x + 2) + x + (x - 2) = 4 x + 2 + x + x - 2 = 4 3x = 4 x = 4/3 (не входит в интервал)
Поскольку пирамида правильная, то в ее основании лежит правильный четырехугольник - квадрат. Кроме того, высота пирамиды проецируется в центр квадрата. Таким образом, катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.
Найдем половину стороны основания:
а/2=√(l²-h²) = √(13²-12²) = √25 = 5, а = 10.
Площадь поверхности S = Sбок + Soсн = 1/2*4a*l + a*a
= 2*10*13 + 10*10 = 260 + 100 = 360
1) Интервал (-∞; -2]
- (x + 2) -x - (x - 2) = 4
-x - 2 - x - x + 2 = 4
-3x = 4
x = -4/3 (не входит в интервал)
2) Интервал (-2;0]
(x + 2) - x - (x - 2) = 4
x + 2 - x - x + 2 = 4
-x + 4 = 4
-x = 0 ⇔ x = 0 (имеется в интервале)
3) Интервал (0; 2]
(x + 2) + x - (x - 2) = 4
x + 2 + x - x + 2 = 4
x + 4 = 4
x = 0 (не входит в интервал)
4) Интервал (2; ∞)
(x + 2) + x + (x - 2) = 4
x + 2 + x + x - 2 = 4
3x = 4
x = 4/3 (не входит в интервал)
ответ: 1 корень