Найдём частные производные
по x' =
по y' =
Решим систему уравнений.
= 0;
Получаем: x₁ = -2; x₂ = 4/3
y₁ = -3; y₂ = 1/3
Количество критических точек равно 2.
M₁(-2;-3), M₂(4/3;1/3)
Найдем частные производные второго порядка
по x'' = 6x
по y'' = -2
по xy''= 2
Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M₁(-2;-3)
A = по x'' = -12
B = по xy'' = 2
C = по y'' = -2
AC - B² = 20 > 0 и A < 0 , то в точке M₁(-2;-3) имеется максимум z(-2;-3) = 13
Вычисляем значения для точки M₂(4/3;1/3)
A = по x'' = 8
AC - B² = -20 < 0, то глобального экстремума нет
ответ: в точке M₁(-2;-3) max = 13.
фуууххх вроде бы как-то так)
Внимание!
В условии задачи опечатки. Одна исправлена, а вторая - нет. Запишем условие задачи правильно.
ДАНО:
1) y(x) = x+1 при х<1
2) y(x) = x² + 1 при - 1 ≤ х ≤ 1
3) y(x) = 3/(1 - x) при х > 1.
Пошаговое объяснение:
Три разных участка графика.
1) y = х +1 - прямая линия.
Построение по двум точкам, Например,
у= х + 1 = 0 получаем х = 1
х = -4 и у = -4+1 = - 3.
Важно! При Х=-1 функция не существует - точку (-1;0) изображаем в виде кольца ("дырки").
Область значений этой части функции - Е(у)∈(-∞;0)
2) y = x² + 1 - парабола поднятая на единицу вверх.
Для построения графика вычислим пять точек.
а) при х = 0 и у(0) = 1
б) при х= ±0.5 функция y= 1/4 + 1 = 1.25.
в) при х= ±1 функция у = 1 + 1 = 2.
Здесь по краям области определения она существует - ставим "точки", .
3) y = 3/(1-x) - гипербола.
Деление на 0 недопустимо. Находим область определения функции - D(y) ∈(1;+∞)
При x=1 - разрыв - вертикальная асимптота - к ней стремится линия графика.
Построение графика по нескольким точкам.
При х = 1. 1, у = 3/(-0,1) = - 30 (вне рисунка).
х = 1,5, у = 3/(-0,5) = -6.
х = 2, у = 3/(-1) = -3.
х = 3, у = - 1,5
х = 4, у = 3/(-3) = -1
х = 7, у = 3/(-6) = - 0,5
Соединяем точки плавной линией.
График функции на рисунке в приложении.
На графике видно, что имеются два разрыва.
Если точки в разрыве имеют конечные значения - это разрыв первого рода - при Х = -1. Он неустранимый, так как значения рядом с точкой х = -1 разные.
При Х = +1 - разрыв II рода - там нет значений справа от Х = 1.
Слева от х = 1 функция у = 2, а справа от х = 1 равна -∞.
Найдём частные производные
по x' =
по y' =
Решим систему уравнений.
= 0;
= 0;
Получаем: x₁ = -2; x₂ = 4/3
y₁ = -3; y₂ = 1/3
Количество критических точек равно 2.
M₁(-2;-3), M₂(4/3;1/3)
Найдем частные производные второго порядка
по x'' = 6x
по y'' = -2
по xy''= 2
Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M₁(-2;-3)
A = по x'' = -12
B = по xy'' = 2
C = по y'' = -2
AC - B² = 20 > 0 и A < 0 , то в точке M₁(-2;-3) имеется максимум z(-2;-3) = 13
Вычисляем значения для точки M₂(4/3;1/3)
A = по x'' = 8
B = по xy'' = 2
C = по y'' = -2
AC - B² = -20 < 0, то глобального экстремума нет
ответ: в точке M₁(-2;-3) max = 13.
фуууххх вроде бы как-то так)
Внимание!
В условии задачи опечатки. Одна исправлена, а вторая - нет. Запишем условие задачи правильно.
ДАНО:
1) y(x) = x+1 при х<1
2) y(x) = x² + 1 при - 1 ≤ х ≤ 1
3) y(x) = 3/(1 - x) при х > 1.
Пошаговое объяснение:
Три разных участка графика.
1) y = х +1 - прямая линия.
Построение по двум точкам, Например,
у= х + 1 = 0 получаем х = 1
х = -4 и у = -4+1 = - 3.
Важно! При Х=-1 функция не существует - точку (-1;0) изображаем в виде кольца ("дырки").
Область значений этой части функции - Е(у)∈(-∞;0)
2) y = x² + 1 - парабола поднятая на единицу вверх.
Для построения графика вычислим пять точек.
а) при х = 0 и у(0) = 1
б) при х= ±0.5 функция y= 1/4 + 1 = 1.25.
в) при х= ±1 функция у = 1 + 1 = 2.
Здесь по краям области определения она существует - ставим "точки", .
3) y = 3/(1-x) - гипербола.
Деление на 0 недопустимо. Находим область определения функции - D(y) ∈(1;+∞)
При x=1 - разрыв - вертикальная асимптота - к ней стремится линия графика.
Построение графика по нескольким точкам.
При х = 1. 1, у = 3/(-0,1) = - 30 (вне рисунка).
х = 1,5, у = 3/(-0,5) = -6.
х = 2, у = 3/(-1) = -3.
х = 3, у = - 1,5
х = 4, у = 3/(-3) = -1
х = 7, у = 3/(-6) = - 0,5
Соединяем точки плавной линией.
График функции на рисунке в приложении.
На графике видно, что имеются два разрыва.
Если точки в разрыве имеют конечные значения - это разрыв первого рода - при Х = -1. Он неустранимый, так как значения рядом с точкой х = -1 разные.
При Х = +1 - разрыв II рода - там нет значений справа от Х = 1.
Слева от х = 1 функция у = 2, а справа от х = 1 равна -∞.