В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Katyastudio
Katyastudio
25.03.2020 11:23 •  Математика

решить задание №349 задание 2 ) записать с десятичных дробей выражения :81 см 1 мм ,5 см 4 мм, 12.т2ц.

Показать ответ
Ответ:
mita421132
mita421132
25.01.2023 21:23

ответ: Да, всегда выполнимо.

Пример для любых n>k>1:

Возьмем n единиц.

Каждые k из них умножим на простое число. (каждый набор из k чисел умножаем на разное простое число, простых чисел бесконечно, а наборов С из n по k).

Полученный набор чисел удовлетворяет условиям:

1) Любые k из имеют общий делитель, больший 1.

Условие (1) Выполняется, т. к. любые k из них делятся на какое-то простое число (из построения примера).

2) Любые k+1 число из них не имеют общий делитель, больший 1, т. е. их наибольший общий делитель равен 1.

Допустим, что это условие не выполняется, найдутся k+1 число с наибольшим общим делителем, не равным 1.

Тогда их наибольший общий делитель раскладывается на простые множители.

На каждый из этих простых множителей делится не более k чисел в наборе из условия построения примера.

Следовательно ни на один из этих простых множителей не делятся все k+1 число. Противоречие, значит условие (2) выполняется.

0,0(0 оценок)
Ответ:
amirak471
amirak471
25.01.2023 21:23
1) из двух шариковдопустим 1 шарик красного цвета2 шарик сисенего цвета3 шарик желтого цвета можно сложить шарики 1 и 2, 1 и 3, 2 и 3, 2 и 1, 3 и 1, 3 и 2 всего в вариантов2)из трех шариковдопустим 1 шарик красного цвета2 шарик сисенего цвета3 шарик желтого цвета  можно сложить шарики 1, 2 и 3; 1, 3 и 2; 2,1 и 3; 2,3 и 1; 3,1 и 2; 3,2 и 1 всего 6 вариантов   Итог: с двумя шариками можно сложить 6 вариантов, и из трех шарико тоже можно сложить 6 вариантов. Если нужна общая сумма всех вариантов то их будет 12
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота