Нам надо просуммировать 4 вероятности: что будут работать 9, 10, 11, и 12 машин, то есть P(9), P(10), P(11), P(12). Это решается через формулу Бернулли:
нам придется считать сочетания из N по М - С (из N по М) , и возводить вероятности в степени. Чтобы найти вероятность, что будет задействовано M машин, нам нужна формула:
P(M) =С (из 12 по M)*0,8^M*0,2^(12-M). То есть мы умножаем сочетание на вероятности, возведенные в степени, равные нужному нам событию. Нам надо, чтобы событие произошло M раз, а вероятность его - 0,8, поэтому и 0,8^M. С другой стороны, нам нужно, чтобы противоположное событие произошло 12-M раз, а его вероятность равно 1-0,8=0,2, поэтому 0,2^(12-M). Сочетания считаются по правилам комбинаторики: С (из N по M) = N!/(M!*(N-M)!
P(9) =С (из 12 по 9)*0,8^9*0,2^3 = 12!/(9!*3!)*0,134217728*0,008=0,23622320128
аналогично:
P(M) =С (из 12 по 10)*0,8^10*0,2^2 =12!/(10!*2!)*0,1073741824*0,04=0,283467841536
P(M) =С (из 12 по 11)*0,8^M*0,2^1 = 12!/(11!*1!)*0,08589934592*0,2 = 0,206158430208
P(M) =С (из 12 по 12)*0,8^M*0,2^0 = 12!/(12!*0!)*0,068719476736 = 0,068719476736
Суммируем все это, получается 0,79456894976, или 79,457%
Нам надо просуммировать 4 вероятности: что будут работать 9, 10, 11, и 12 машин, то есть P(9), P(10), P(11), P(12). Это решается через формулу Бернулли:
нам придется считать сочетания из N по М - С (из N по М) , и возводить вероятности в степени. Чтобы найти вероятность, что будет задействовано M машин, нам нужна формула:
P(M) =С (из 12 по M)*0,8^M*0,2^(12-M). То есть мы умножаем сочетание на вероятности, возведенные в степени, равные нужному нам событию. Нам надо, чтобы событие произошло M раз, а вероятность его - 0,8, поэтому и 0,8^M. С другой стороны, нам нужно, чтобы противоположное событие произошло 12-M раз, а его вероятность равно 1-0,8=0,2, поэтому 0,2^(12-M). Сочетания считаются по правилам комбинаторики: С (из N по M) = N!/(M!*(N-M)!
P(9) =С (из 12 по 9)*0,8^9*0,2^3 = 12!/(9!*3!)*0,134217728*0,008=0,23622320128
аналогично:
P(M) =С (из 12 по 10)*0,8^10*0,2^2 =12!/(10!*2!)*0,1073741824*0,04=0,283467841536
P(M) =С (из 12 по 11)*0,8^M*0,2^1 = 12!/(11!*1!)*0,08589934592*0,2 = 0,206158430208
P(M) =С (из 12 по 12)*0,8^M*0,2^0 = 12!/(12!*0!)*0,068719476736 = 0,068719476736
Суммируем все это, получается 0,79456894976, или 79,457%
Пошаговое объяснение:
Пошаговое объяснение:
Острый угол — это угол, который меньше прямого угла (<90°).
Прямой угол — это угол, стороны которого перпендикулярны друг другу. Прямой угол обозначается буквой d и равен 90°.
Если два смежных угла равны между собой, то каждый из них называется прямым углом. Прямой угол обычно обозначается не дугой, а уголком
∠AOC и ∠COB — прямые углы. Общая сторона прямых углов OC называется перпендикуляром к прямой AB, а точка O — основанием перпендикуляра.
Сумма двух прямых углов равна развёрнутому углу, значит, прямой угол равен половине развёрнутого угла.
Тупой угол — это угол, который больше прямого угла, но меньше развёрнутого:
90° < тупой угол < 180°.
Развёрнутый угол — это угол, образованный двумя дополнительными лучами.
Развёрнутый угол равен сумме двух прямых углов или, короче, двум прямым углам. Следовательно, развёрнутый угол равен 180° или 2d.
Все развёрнутые углы равны между собой.
Выпуклый угол — это угол, который больше развёрнутого угла, но меньше полного:
180° < выпуклый угол < 360°.
Полный угол — это угол, обе стороны которого совпадают с одним лучом.
Полный угол равен сумме четырёх прямых углов, то есть 4d (360°).
Прилежащие углы
Прилежащие углы — это пара углов, имеющих общую вершину и общую сторону, другие стороны которых лежат по разные стороны от общей стороны.
Прилежащие углы