Исток Томи находится на западных склонах Абаканского хребта, на болотистом склоне между северными отрогами хребта Карлыган и горой «Вершина Томи». Первые километры течёт по заболоченной долине в юго-западном направлении. Относительно происхождения топонима «Томь» существуют различные гипотезы. В частности, известный лингвист и историк А. М. Кондратов пришёл к выводу, что речное имя восходит к языку ныне весьма малочисленного народа кетов. Длина реки — 827 км, ширина поймы до — 3 км, перепад высот от истока до устья — 1185 м, площадь водосбора — 62 тыс. км². Среднемноголетний расход воды и годовой сток соответственно: 1100 м³/c, 35,0 км³/год. Средняя скорость течения — 0,33 м/с, на перекатах — 1,75 м/с. Замерзает в конце октября — начале ноября, вскрывается в конце апреля. Средняя продолжительность ледостава — 158—160 дней, в среднем 175 дней в год свободна от льда. Дождевое питание реки составляет 25-40 %, снеговое — 35-55 % и грунтовое — 25-35 % годового стока.
Связь между радиусом вписанной окружности r и радиусом описанной окружности R определяется формулой: , где n- число сторон многоугольника. Отсюда их соотношение равно:
Отношение площадей кругов равно отношению квадратов их радиусов:
По условию задачи оно равно 0,75 или 3/4. Получаем Значение √3/2 соответствует углу 30°. Значит, 180°/n = 30°, отсюда n = 180/30 = 6. Если периметр многоугольника равен 12, а число сторон равно 6, то длина стороны составит a = 12/6 = 2 см. Радиус описанного круга для шестиугольника R = a = 2 см. Радиус вписанного круга r = a*(√3/2) = 2*(√3/2) = √3 см.
Длина реки — 827 км, ширина поймы до — 3 км, перепад высот от истока до устья — 1185 м, площадь водосбора — 62 тыс. км². Среднемноголетний расход воды и годовой сток соответственно: 1100 м³/c, 35,0 км³/год. Средняя скорость течения — 0,33 м/с, на перекатах — 1,75 м/с. Замерзает в конце октября — начале ноября, вскрывается в конце апреля. Средняя продолжительность ледостава — 158—160 дней, в среднем 175 дней в год свободна от льда. Дождевое питание реки составляет 25-40 %, снеговое — 35-55 % и грунтовое — 25-35 % годового стока.
, где n- число сторон многоугольника.
Отсюда их соотношение равно:
Отношение площадей кругов равно отношению квадратов их радиусов:
По условию задачи оно равно 0,75 или 3/4.
Получаем
Значение √3/2 соответствует углу 30°.
Значит, 180°/n = 30°, отсюда n = 180/30 = 6.
Если периметр многоугольника равен 12, а число сторон равно 6, то длина стороны составит a = 12/6 = 2 см.
Радиус описанного круга для шестиугольника R = a = 2 см.
Радиус вписанного круга r = a*(√3/2) = 2*(√3/2) = √3 см.