Вкармане у пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. петя, не глядя, переложил какие-то 3 монеты в другой карман. найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах. решение. чтобы пятирублевые монеты оказались в разных карманах, петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий:
другое рассуждение. вероятность того, что петя взял пятирублевую монету, затем десятирублевую, и затем еще одну десятирублевую (в указанном порядке) равна
поскольку петя мог достать пятирублевую монету не только первой, но и второй или третьей, вероятность достать набор из одной пятирублевой и двух десятирублевых монет в 3 раза больше. тем самым, она равна 0,6.
ответ: 0,6. другое решение. количество способов взять 3 монеты из 6, чтобы переложить их в другой карман, равно количество способов выбрать 1 пятирублевую монету из 2 пятирублевых монет и взять вместе с ней еще 2 десятирублевых монеты из имеющихся 4 десятирублевых монет по правилу произведения равно поэтому искомая вероятность того, что пятирублевые монеты лежат в разных карманах, равна
Будем считать, что все номера трехзначные, просто незначащие нули ничего не стоят.
За последние цифры жители обоих подъездов заплатили одинаково – по n стоимостей цифры (примем её за 1)За вторые цифры справа платили жители с номерами, большими 9. Если n < 5, за эти цифры не платил никто; если 5 ≤ n < 10, то за эти цифры заплатили 2n - 9 жителей второго подъезда; если n ≥ 10 – платили n - 9 жителей первого подъезда и n жителей второго подъездаЗа третьи цифры справа платили жители с номерами, большими 99. Если n < 50, за эти цифры не платил никто; если 50 ≤ n < 100, то за эти цифры заплатили 2n - 99 жителей второго подъезда; если n ≥ 100 – платили n - 99 жителей первого подъезда и n жителей второго подъезда
Итак, есть следующие варианты:
n < 5: жители заплатили по n5 ≤ n < 10: жители первого подъезда заплатили n, жители второго – n + (2n - 9) = 3n - 910 ≤ n < 50: жители первого подъезда заплатили n + (n - 9) = 2n - 9, жители второго – 2n50 ≤ n < 100: жители первого подъезда заплатили n + (n - 9) = 2n - 9, жители второго – 2n + (2n - 99) = 4n - 99100 ≤ n ≤ 150: жители первого подъезда заплатили n + (n - 9) + (n - 99) = 3n - 108, жители второго – 3n
Проверяем, могли ли суммы отличаться на 40%:
нет1,4 n = 3n - 9 – нет целых решений1,4 (2n - 9) = 2n – нет целых решений1,4 (2n - 9) = 4n - 99 – подходит, n = 721,4 (3n - 108) = 3n – подходит, n = 126
решение.
чтобы пятирублевые монеты оказались в разных карманах, петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий:
другое рассуждение.
вероятность того, что петя взял пятирублевую монету, затем десятирублевую, и затем еще одну десятирублевую (в указанном порядке) равна
поскольку петя мог достать пятирублевую монету не только первой, но и второй или третьей, вероятность достать набор из одной пятирублевой и двух десятирублевых монет в 3 раза больше. тем самым, она равна 0,6.
ответ: 0,6.
другое решение.
количество способов взять 3 монеты из 6, чтобы переложить их в другой карман, равно количество способов выбрать 1 пятирублевую монету из 2 пятирублевых монет и взять вместе с ней еще 2 десятирублевых монеты из имеющихся 4 десятирублевых монет по правилу произведения равно поэтому искомая вероятность того, что пятирублевые монеты лежат в разных карманах, равна
72 или 126
Пошаговое объяснение:
Пусть всего квартир 2n.
Будем считать, что все номера трехзначные, просто незначащие нули ничего не стоят.
За последние цифры жители обоих подъездов заплатили одинаково – по n стоимостей цифры (примем её за 1)За вторые цифры справа платили жители с номерами, большими 9. Если n < 5, за эти цифры не платил никто; если 5 ≤ n < 10, то за эти цифры заплатили 2n - 9 жителей второго подъезда; если n ≥ 10 – платили n - 9 жителей первого подъезда и n жителей второго подъездаЗа третьи цифры справа платили жители с номерами, большими 99. Если n < 50, за эти цифры не платил никто; если 50 ≤ n < 100, то за эти цифры заплатили 2n - 99 жителей второго подъезда; если n ≥ 100 – платили n - 99 жителей первого подъезда и n жителей второго подъездаИтак, есть следующие варианты:
n < 5: жители заплатили по n5 ≤ n < 10: жители первого подъезда заплатили n, жители второго – n + (2n - 9) = 3n - 910 ≤ n < 50: жители первого подъезда заплатили n + (n - 9) = 2n - 9, жители второго – 2n50 ≤ n < 100: жители первого подъезда заплатили n + (n - 9) = 2n - 9, жители второго – 2n + (2n - 99) = 4n - 99100 ≤ n ≤ 150: жители первого подъезда заплатили n + (n - 9) + (n - 99) = 3n - 108, жители второго – 3nПроверяем, могли ли суммы отличаться на 40%:
нет1,4 n = 3n - 9 – нет целых решений1,4 (2n - 9) = 2n – нет целых решений1,4 (2n - 9) = 4n - 99 – подходит, n = 721,4 (3n - 108) = 3n – подходит, n = 126