Для начала-"НОК это наименьшее общее кратное чисел a и b. Задача: Два автобуса одновременно отправляются от одной площади по разным маршрутам. У одного рейс туда и обратно длится 48 минут, а у другого 1 час 12 минут. Через сколько времени автобусы снова встретятся на этой площади? Решение : Найдем НОК(48;72). НОК(48;72)=144(минуты). 144 минуты =2часа24 минуты. ответ: автобусы снова встретятся на этой площади через 2 часа 24 минуты. НОД-"натуральное число, которое делится без остатка числа а и b. Задача: Туристы проехали за 1 день 56 км, а за 2-72км, причем их скорость была одинаковой и выражалась целым числом км/ч, и каждый день они были в пути целое число часов. Найдите скорость, с которой ехали туристы, если она была наибольшей из удовлетворяющих условию задачи. Решение: нужно найти НОД (56;72) НОД(56;72)=8 Скорость равна 8 км/ч ответ: 8 км/ч.
Пусть скорость автобуса на участке АВ равна х км/ч, тогда скорость волги на этом же участке равна 4х км/ч. На участке ВС автобус разогнался до скорости х+40 км/ч, а волга до скорости 4х+40 км/ч, что, по условию задачи, в два раза быстрее стрости автобуса и равна (х+40)*2.
Получаем уравнение:
4х+40=(х+40)*2
4х+40=2х+80
4х-2х=80-40
2х=40
х=40/2
х=20
Скорость автобуса на участке АВ равна 20 км/ч.
Наибольшая скорость автобуса (на участке ВС) равна 20+40=60 км/ч
Наибольшая скорость волги (на участке ВС) равна 60*2=120 км/ч
Пусть скорость автобуса на участке АВ равна х км/ч, тогда скорость волги на этом же участке равна 4х км/ч. На участке ВС автобус разогнался до скорости х+40 км/ч, а волга до скорости 4х+40 км/ч, что, по условию задачи, в два раза быстрее стрости автобуса и равна (х+40)*2.
Получаем уравнение:
4х+40=(х+40)*2
4х+40=2х+80
4х-2х=80-40
2х=40
х=40/2
х=20
Скорость автобуса на участке АВ равна 20 км/ч.
Наибольшая скорость автобуса (на участке ВС) равна 20+40=60 км/ч
Наибольшая скорость волги (на участке ВС) равна 60*2=120 км/ч
Или так 20*4+40=80+40=120 км/ч