В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lavinaalina
lavinaalina
18.02.2023 20:56 •  Математика

решите сор 1 по матем 6 класс ​


решите сор 1 по матем 6 класс ​

Показать ответ
Ответ:
Liliya0529
Liliya0529
21.08.2021 06:30

При сложении двух чисел с одинаковыми знаками:

1) сумма имеет такой же знак, как и слагаемые

2) модуль суммы равен сумме модулей слагаемых

    а) если числа положительные, сумма будет со знаком «плюс» («+»)

    12,4+2,5=16,9

   б) если числа отрицательные, сумма будет со знаком «минус» («-»).

     -5,2+(-2,7)=-(5,2+2,7)=-7,9

При сложении двух чисел с разными знаками из большего модуля вычитают меньший и перед полученным числом ставят знак того слагаемого, модуль которого больше.

При сложении чисел с разными знаками и результате возможны такие варианты:

Число положительное больше числа отрицательного, тогда сумма будет со знаком «плюс» («+»).

120 + (-80)=120-80=40

 0,45 + (-0,23) = 0,42-0,23=0,19

Число положительное меньше числа отрицательного, тогда сумма будет со знаком «минус» («-»).

25+(-48)=-(48-25)=-23

1,48+(-3,16) = -(3,16-1,48)=-1,68

5/8 + (-7/8) = -(7/8-5/8)=-2/8

 


0,0(0 оценок)
Ответ:
Apostol1378
Apostol1378
15.01.2020 11:12
Простой ответ:
--------------------------
1. Верно
2. Не верно 
3. Верно
4. Не верно
--------------------------
Сложный ответ:
--------------------------
1.
Множество \mathbb N замкнуто относительно операции сложения. Следовательно , сумма натуральных чисел всегда будет натуральным.

2.
Множество \mathbb N не замкнуто относительно операции вычитания. Так как, если  n\in \mathbb N. То разность между n и n+1 не является элементом множества \mathbb N , n-(n+1)=-1 \notin \mathbb N
Следовательно, разность натуральных чисел не всегда натуральна.

3.
Множество \mathbb N замкнуто относительно операции умножения. Следовательно, произведение любых натуральных чисел, всегда натурально.

4. 
Множество \mathbb N не замкнуто относительно операции деления. Так как если n,k\in \mathbb N и n \neq k , k \neq 1. То  \frac{n}{k} \notin \mathbb N.
Следовательно, деление двух натуральных чисел, не всегда натурально. 
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота