ответ: В 1-м ящике 43 куска мыла, во 2-м - 37 кусков мыла.
Пошаговое объяснение:
Пусть х кусков мыла в 1-м ящике, тогда (80-х) кусков мыла во 2-м ящике. По условию задачи из 1-го ящика перенесли во 2-й ящик 5 кусков мыло, значит (х-5) - кусков мыла осталось в 1-м ящике, 80-х+5 =(85-х) - кусков мыла стало во 2-м ящике. Разность мыла в ящиках стала равна 4. Находим, сколько мыла была первоначально в каждом ящике.
ответ: В 1-м ящике 43 куска мыла, во 2-м - 37 кусков мыла.
Пошаговое объяснение:
Пусть х кусков мыла в 1-м ящике, тогда (80-х) кусков мыла во 2-м ящике. По условию задачи из 1-го ящика перенесли во 2-й ящик 5 кусков мыло, значит (х-5) - кусков мыла осталось в 1-м ящике, 80-х+5 =(85-х) - кусков мыла стало во 2-м ящике. Разность мыла в ящиках стала равна 4. Находим, сколько мыла была первоначально в каждом ящике.
(85-х)-(х-5)=4
90-2*х=4
-2*х=-86
х=-86:(-2)
х=43 - кусков мыло было в 1-м ящике
80-х=80-43=37 - кусков мыла во 2-м ящике
Пошаговое объяснение:
1) x-1≥0; Ix-1I=x-1
(x-1)(x-1)=a
(x-1)²=a при а=0 одно решение при а>0 2 решения при а<0 нет решений
2) x-1<0; Ix-1I=-(x-1)
-(x-1)(x-1)=a
-(x-1)²=a
(x-1)²=-a
при а=0 одно решение при а<0 2 решения при а>0 нет решений
таким образом
при a=0 1 решение
при a>0 2 решения
при a<0 2 решения
то есть при любом а хотя бы одно решение
проверка
1) а=0
(x-1)|x-1|=0; х=1 одно решение
2) а=4
(x-1)|x-1|=4
при x-1≥0
(x-1)²=4 x={3;-1} 2 решения
при x-1<0
-(x-1)²=4 нет решений
всего 2 решения
2) а=-4
(x-1)|x-1|=-4
при x-1≥0 нет решений
при x-1<0
-(x-1)²=-4 x={3;-1} 2 решения
всего 2 решения
во всех случая при действительном a хотя бы одно решение