с задачей. В прямоугольном, равнобедренном треугольнике ABC гипотенуза 28 см. Плоскость α про-ходит через гипотенузу и составляет с треугольником ABC угол 30 градусов. Найдите расстояние от вершины прямого угла треугольника ABC до плоскости α.
Меньшая сторона х, большая х+8 так как периметр 28 м, а маленьких и больших сторон по две, то составим уравнение 2х+2(х+8)=28 откуда 4х+16=28 или 4х=12 т. е. х=3 м, а большая сторона равна 3+8=11 м. Площадь равна 3*11=33 м2
Хм (успеваю добавить после вашего замечания) , действиями так действиями: 1) Пол периметра это 28/2=14 м, 2) Известно, что большая сторона больше на 8 метров т. е. если из их суммы вычесть 8 останется сумма 2 равных частей: 14-8=6 м 3) Так как остаток состоит из 2 равных частей, а эта часть равная меньшей стороне 6/2=3 м 4) большая сторона равна 3+8=11 м. 5) Площадь равна 3*11=33 м2
Мысль 1 - какие бывают масштабы? - на рисунке в приложении карта случайной местности. Три вида:численный, именованный, линейный.
Мысль 2 - как легче вычислять - делить или умножать.
Дано: М = 1:200 - численный масштаб,
N₁ = 7 м - реальный отрезок, N₂ = 5.2 м - реальный радиус.
Найти: L₁=? L₂=? Изобразить в масштабе.
Мысль 3 - вычислим через численный масштаб и умножаем.
1) L₁ = N₁ * M = 7(м)* (1/200) = 7/200 =0,035 (м) = 3,5 см = 35 мм. - длина отрезка - ответ.
Мысль 4 - вычислим через именованный масштаб, переведём в него и будем делить.
В 1 см = 200 см = 2 м или k = 2 м/см - именованный масштаб.
2) L₁ =N₁ : k = 7 (м) : 2 (м/см) = 3,5 см = 35 мм - длина отрезка - ответ - (гораздо проще оказалось).
Аналогично два варианта для задачи б) - радиус N₂ = 5,2 м.
3) L₂ = 5.2 (м) * 1/200 = 0,026 м = 2,6 см = 26 мм - радиус - ответ.
4) L₂ = 5.2 (м) : 2(м/см) = 2,6 см = 26 мм - радиус - ответ.
Мысль 5 - изображаем результаты на рисунке в приложении. Потребуется циркуль.
ДОПОЛНИТЕЛЬНО:
ИНТЕРЕСНА ОБРАТНАЯ ЗАДАЧА - как по карте или плану найти реальные размеры. Для этого можно использовать линейный нониус, который обычно есть на транспортире.
2х+2(х+8)=28 откуда 4х+16=28 или 4х=12 т. е. х=3 м, а большая сторона равна 3+8=11 м.
Площадь равна 3*11=33 м2
Хм (успеваю добавить после вашего замечания) , действиями так действиями:
1) Пол периметра это 28/2=14 м,
2) Известно, что большая сторона больше на 8 метров т. е. если из их суммы вычесть 8 останется сумма 2 равных частей: 14-8=6 м
3) Так как остаток состоит из 2 равных частей, а эта часть равная меньшей стороне 6/2=3 м
4) большая сторона равна 3+8=11 м.
5) Площадь равна 3*11=33 м2
Удачи
Решаем силой Разума - сначала думаем.
Мысль 1 - какие бывают масштабы? - на рисунке в приложении карта случайной местности. Три вида:численный, именованный, линейный.
Мысль 2 - как легче вычислять - делить или умножать.
Дано: М = 1:200 - численный масштаб,
N₁ = 7 м - реальный отрезок, N₂ = 5.2 м - реальный радиус.
Найти: L₁=? L₂=? Изобразить в масштабе.
Мысль 3 - вычислим через численный масштаб и умножаем.
1) L₁ = N₁ * M = 7(м)* (1/200) = 7/200 =0,035 (м) = 3,5 см = 35 мм. - длина отрезка - ответ.
Мысль 4 - вычислим через именованный масштаб, переведём в него и будем делить.
В 1 см = 200 см = 2 м или k = 2 м/см - именованный масштаб.
2) L₁ =N₁ : k = 7 (м) : 2 (м/см) = 3,5 см = 35 мм - длина отрезка - ответ - (гораздо проще оказалось).
Аналогично два варианта для задачи б) - радиус N₂ = 5,2 м.
3) L₂ = 5.2 (м) * 1/200 = 0,026 м = 2,6 см = 26 мм - радиус - ответ.
4) L₂ = 5.2 (м) : 2(м/см) = 2,6 см = 26 мм - радиус - ответ.
Мысль 5 - изображаем результаты на рисунке в приложении. Потребуется циркуль.
ДОПОЛНИТЕЛЬНО:
ИНТЕРЕСНА ОБРАТНАЯ ЗАДАЧА - как по карте или плану найти реальные размеры. Для этого можно использовать линейный нониус, который обычно есть на транспортире.