В некотором царстве, в некотором государстве жил-был помещик, “и всего-то у него было довольно: и крестьян, и хлеба, и скота, и земли, и садов. Был он глуп, читал газету "Весть" и тело имел мягкое, белое и рассыпчатое”. Одно только ему не нравится, и вот, жалуется он Богу: слишком много развелось мужиков! Но Бог знал, что помещик глуп, а потому его не послушал. Тогда помещик решил сам их извести и начал всячески притеснять. Крестьяне взмолились всем миром к Господу Богу: “Господи! Легче нам пропасть и с детьми с малыми, нежели всю жизнь так маяться!” Бог услышал их молитву — “и не стало мужика на всем пространстве владений глупого помещика”. Помещик обрадовался. Решил он завести у себя театр, пригласил труппу, но в доме помещика пусто, некому даже поднимать занавес, так что актеры уехали. Помещик созвал гостей, те приехали голодные — а есть-то нечего! Пришлось уезжать несолоно хлебавши, дивясь глупости помещика. А тот решил разложить пасьянс: если три раза кряду выйдет, значит, надо стоять до конца. Как раз три раза пасьянс и выходит. Помещик бродит по комнатам и думает, какие он машины из Англии выпишет, как сад разведет, какие коровы у него будут. Забудется, позовет слугу, а никто не откликается. И тут приезжает к нему сам капитан-исправник и спрашивает, кто за мужиков подати платить будет. Да и на базаре стало совсем пусто, нет ни мяса, ни хлеба. “Глупый же вы, господин помещик!” — говорит исправник. Тут уж помещикпи водворить, а глупому помещику, который всей смуте зачинщик, наиделикатней-ше внушить, дабы он фанфаронства свои прекратил и поступлению в казначейство податей препятствия не чинил”. Мужиков вернули в уезд, и на базаре снова появились и мука, и мясо, и живность всякая, да и подати потоком пошли в казначейство. Помещика, с большим трудом, изловили. “Изловивши, сейчас же высморкали, вымыли и обстригли ногти”. Капитан-исправник отобрал у помещика газету “Весть” и поручил его надзору Сеньки. Помещик “жив и доныне. Раскладывает гранпасьянс, тоскует по прежней своей жизни в лесах, умывается лишь по принуждению и по временам мычит”.ризадумался: все его глупым называют, неужели он в самом деле дурак? Между тем имение помещика приходит в запустение, зарастает травой, а однажды появился даже медведь. “Сенька!” — вскрикнул испуганный помещик, спохватился и... заплакал. Но все еще хочет держаться до конца. “И вот он одичал. Хоть в это время наступила уже осень и морозцы стояли порядочные, но он не чувствовал даже холода. Весь он, с головы до ног, оброс волосами... а ногти у него сделались как железные. Сморкаться он уж давно перестал, ходил же все больше на четвереньках... Утратил даже произносить членораздельные звуки... Но хвоста еще не приобрел”. Залезет он на дерево и сидит. Прибежит заяц — он на него бросается сверху и поедает прямо со шкурой. “И сделался он силен ужасно, до того силен, что даже счел себя вправе войти в дружеские сношения с тем самым медведем”. Исправник тем временем сообщил об исчезновении мужиков губернскому начальству. Созвали совет. Было решено: “Мужика изловить
Как найти наименьший общий знаменатель Для сложения или вычитания дробей с разными знаменателями сначала необходимо найти их наименьший общий знаменатель (НОЗ). Таким числом будет наименьшее общее кратное (НОК) двух или более знаменателей. Вот несколько различных методов для вычисления НОЗ и информация о том, как подставить НОЗ обратно в уравнение для решения задачи.
Реклама Править Метод 1 из 4: Перечисление кратных [1]
1 Перечислите кратные каждого знаменателя. Составьте список из нескольких кратных для каждого знаменателя в уравнении. Каждый список должен состоять из произведения знаменателя на 1, 2, 3, 4 и так далее. Пример: 1/2 + 1/3 + 1/5 Кратные 2: 2 * 1 = 2; 2 * 2 = 4; 2 * 3 = 6; 2 * 4 = 8; 2 * 5 = 10; 2 * 6 = 12; 2 * 7 = 14; т.д. Кратные 3: 3 * 1 = 3; 3 * 2 = 6; 3 *3 = 9; 3 * 4 = 12; 3 * 5 = 15; 3 * 6 = 18; 3 * 7 = 21; т.д. Кратные 5: 5 * 1 = 5; 5 * 2 = 10; 5 * 3 = 15; 5 * 4 = 20; 5 * 5 = 25; 5 * 6 = 30; 5 * 7 = 35; т.д.
2 Определите наименьшее общее кратное. Просмотрите каждый список и отметьте любые кратные числа, которые являются общими для каждого оригинального знаменателя. После выявления общих кратных определите наименьший знаменатель. Обратите внимание, что если не найден общий знаменатель, возможно, потребуется продолжить выписывать кратные до тех пор, пока не появится общее кратное число. Пример: 2 * 15 = 30; 3 * 10 = 30; 5 * 6 = 30 НОЗ = 30
3 Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель. Пример: 15 * (1/2); 10 * (1/3); 6 * (1/5) Новое уравнение: 15/30 + 10/30 + 6/30
4 Решите. После нахождения НОЗ и изменения соответствующих дробей, просто вычислите значение этого сложения. Пример: 15/30 + 10/30 + 6/30 = 31/30 = 1 1/30 Реклама Править Метод 2 из 4: Использование наибольшего общего делителя[2]
1 Вычислите наибольший общий делитель (НОД) для каждого знаменателя. Найдите НОД через перечисление возможных делителей каждого знаменателя. Пример: 3/8 + 5/12 Делители 8: 1, 2, 4, 8 Делители 12: 1, 2, 3, 4, 6, 12 НОД: 4
5 Решите уравнение. НОЗ найден; просто найдите значение этой суммы. Пример: 9/24 + 10/24 = 19/24 Реклама Править Метод 3 из 4: Разложение каждого знаменателя на простые множители[3]
1 Разложите каждый знаменатель на простые множители. Напомним, что простые множители – числа, которые делятся только на 1 или самих себя. Пример: 1/4 + 1/5 + 1/12 Простые множители 4: 2 * 2 Простые множители 5: 5 Простые множители 12: 2 * 2 * 3
2 Подсчитайте число раз каждый простой множитель есть у каждого знаменателя. Пример: Есть две 2 для знаменателя 4; нуль 2 для 5; две 2 для 12 Есть нуль 3 для 4 и 5; одна 3 для 12 Есть нуль 5 для 4 и 12; отдна 5 для 5
3 Возьмите только наибольшее число раз (эти множители есть в любом знаменателе) для каждого простого множителя. Например: наибольшее число раз для множителя 2 - 2 раза; для 3 – 1 раз; для 5 – 1 раз.
4 Запишите по порядку найденные в предыдущем шаге простые множители (с учетом наибольшего числа раз). Пример: 2, 2, 3, 5
5 Перемножьте эти числа. Результат произведения этих чисел равно НОЗ. Пример: 2 * 2 * 3 * 5 = 60 НОЗ = 60
Для сложения или вычитания дробей с разными знаменателями сначала необходимо найти их наименьший общий знаменатель (НОЗ). Таким числом будет наименьшее общее кратное (НОК) двух или более знаменателей. Вот несколько различных методов для вычисления НОЗ и информация о том, как подставить НОЗ обратно в уравнение для решения задачи.
Реклама
Править
Метод 1 из 4:
Перечисление кратных [1]
1
Перечислите кратные каждого знаменателя. Составьте список из нескольких кратных для каждого знаменателя в уравнении. Каждый список должен состоять из произведения знаменателя на 1, 2, 3, 4 и так далее.
Пример: 1/2 + 1/3 + 1/5
Кратные 2: 2 * 1 = 2; 2 * 2 = 4; 2 * 3 = 6; 2 * 4 = 8; 2 * 5 = 10; 2 * 6 = 12; 2 * 7 = 14; т.д.
Кратные 3: 3 * 1 = 3; 3 * 2 = 6; 3 *3 = 9; 3 * 4 = 12; 3 * 5 = 15; 3 * 6 = 18; 3 * 7 = 21; т.д.
Кратные 5: 5 * 1 = 5; 5 * 2 = 10; 5 * 3 = 15; 5 * 4 = 20; 5 * 5 = 25; 5 * 6 = 30; 5 * 7 = 35; т.д.
2
Определите наименьшее общее кратное. Просмотрите каждый список и отметьте любые кратные числа, которые являются общими для каждого оригинального знаменателя. После выявления общих кратных определите наименьший знаменатель.
Обратите внимание, что если не найден общий знаменатель, возможно, потребуется продолжить выписывать кратные до тех пор, пока не появится общее кратное число.
Пример: 2 * 15 = 30; 3 * 10 = 30; 5 * 6 = 30
НОЗ = 30
3
Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель.
Пример: 15 * (1/2); 10 * (1/3); 6 * (1/5)
Новое уравнение: 15/30 + 10/30 + 6/30
4
Решите. После нахождения НОЗ и изменения соответствующих дробей, просто вычислите значение этого сложения.
Пример: 15/30 + 10/30 + 6/30 = 31/30 = 1 1/30
Реклама
Править
Метод 2 из 4:
Использование наибольшего общего делителя[2]
1
Вычислите наибольший общий делитель (НОД) для каждого знаменателя. Найдите НОД через перечисление возможных делителей каждого знаменателя.
Пример: 3/8 + 5/12
Делители 8: 1, 2, 4, 8
Делители 12: 1, 2, 3, 4, 6, 12
НОД: 4
2
Перемножьте знаменатели между собой.
Пример: 8 * 12 = 96
3
Разделите полученное значение на НОД. Полученное число будет наименьшим общим знаменателем (НОЗ).
Пример: 96 / 4 = 24
4
Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель.
Пример: 24 / 8 = 3; 24 / 12 = 2
3 * (3/8) = 9/24; 2 * (5/12) = 10/24
9/24 + 10/24
5
Решите уравнение. НОЗ найден; просто найдите значение этой суммы.
Пример: 9/24 + 10/24 = 19/24
Реклама
Править
Метод 3 из 4:
Разложение каждого знаменателя на простые множители[3]
1
Разложите каждый знаменатель на простые множители. Напомним, что простые множители – числа, которые делятся только на 1 или самих себя.
Пример: 1/4 + 1/5 + 1/12
Простые множители 4: 2 * 2
Простые множители 5: 5
Простые множители 12: 2 * 2 * 3
2
Подсчитайте число раз каждый простой множитель есть у каждого знаменателя.
Пример: Есть две 2 для знаменателя 4; нуль 2 для 5; две 2 для 12
Есть нуль 3 для 4 и 5; одна 3 для 12
Есть нуль 5 для 4 и 12; отдна 5 для 5
3
Возьмите только наибольшее число раз (эти множители есть в любом знаменателе) для каждого простого множителя.
Например: наибольшее число раз для множителя 2 - 2 раза; для 3 – 1 раз; для 5 – 1 раз.
4
Запишите по порядку найденные в предыдущем шаге простые множители (с учетом наибольшего числа раз).
Пример: 2, 2, 3, 5
5
Перемножьте эти числа. Результат произведения этих чисел равно НОЗ.
Пример: 2 * 2 * 3 * 5 = 60
НОЗ = 60
6
Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель.
Пример: 60/4 = 15; 60/5 = 12; 60/12 = 5
15 * (1/4) = 15/60; 12 * (1/5) = 12/60; 5 * (1/12) = 5/60
15/60 + 12/60 + 5/60
7
Решите.
Пример: 15/60 + 12/60 + 5/60 = 32/60 = 8/15
Реклама
Править
Метод 4 из 4:
Работа со смешанными числами[4]
1
Преобразуйте каждое смешанное число в неправильную дробь. Для этого умножте...Дальше не помню ((( Чем смогла Найди нужный параграф и читай:)