Рассмотрим максимальное число победных игр: 75 : 3 = 25 (игр), но при таком варианте игр вничью быть не может. будем уменьшать число победных игр и считать, сколько за это команда получит очков. предположим, что победных игр 24: 24 · 3 = 72. таким образом, в данной конфигурации может быть 24 победы, 3 поражения и 3 ничьи. предположим, что победных игр 23: 23 · 3 = 69. получаем, что 6 очков за ничью и 0 очков за поражение. предположим, что победных игр 22: 22 · 3 = 66. получаем, что такой ситуации быть не может, так как максимальное число игр вничью — восемь, следовательно, 8 очков — 66 + 8 = 74, а в условии сказано, что команда набрала 75 очков. таким образом, наибольшее число ничейных матчей — 6.ответ: 6.
ответ:
в вопросе звучит, что нужно подобрать 2016 целых числа, то есть неважно, отрицательные они или положительные.
вариант первый:
9, 7, –8, –4 и 2012 единиц = всего 2016 чисел.
выполняем проверку:
9 * 7 * (–8) * (–4) * 1 * 1 * * 1 (2012 раз) = 63 * 32 * 1 = 2016.
9 + 7 + (–8) + (–4) + 1 * 2012 = 16 - 12 + 2012 = 2016.
вариант второй:
1008, 2, 1510 единиц и 504 по (-1) = 2 + 1510 + 504 = 2016 чисел.
выполняем проверку:
1008 * 2 * 1 * 1 * (1510 раз) * (-1) * (-1) * (-1) (504 раза) = 2016.
1008 + 2 + 1 * 1510 + (-1) * 504 = 1010 + 1510 - 504 = 2016.
пошаговое объяснение: