1способ 100% весь периметр прямоугольника, то есть сколько-то % ширина прямоугольника + сколько-то % длина прямоугольника= 100% периметр прямоугольника. от 100% +10% -20% = 90% теперь периметр прямоугольника. 100% - 90% = 10%, значит на 10% уменьшился периметр прямоугольника. 2 способ х - ширина прямоугольника 4х - длина прямоугольника х + 4х= периметр прямоугольника, он 100% 5х=100% х=100/5 x=20% - это ширина прямоугольника в % 4х =4* 20%=80% - это длина прямоугольника в % так как ширину увеличили на 10% , то 20 % + 10%= 30% новая ширина прямоугольника в %.а так как длину уменьшили на 20% , то 80%- 20% = 60% новая длина прямоугольника в %.значит новый периметр прямоугольника в % будет таким: 60% + 30%= 90% теперь определим на сколько % изменился периметр прямоугольника: 100% - 90% = 10%, т.е. периметр прямоугольника изменился на 10%.
ответ:
пошаговое объяснение:
x^2+3x+2< =0
(x+1)(x+2)< =0
x € [-2; -1]
нам надо, чтобы этот отрезок попал целиком внутрь промежутка - решения 2 неравенства.
x^2 + 2(2a+1)x + (4a^2-3) < 0
d/4 = (2a+1)^2 - (4a^2-3) = 4a^2+4a+1-4a^2+3 = 4a+4
если это неравенство имеет два корня, то d/4 > 0
a > -1
x1 = -2a-1-√(4a+4) < -2
x2 = -2a-1+√(4a+4) > -1
тогда решение 1 неравенства [-2; -1] целиком находится внутри решения 2 неравенства [x1; x2].
{ -√(4a+4) = -2√(a+1) < = 2a-1
{ √(4a+4) = 2√(a+1) > = 2a
из 1 неравенства
2√(a+1) > = 1-2a
4(a+1) > = 1-4a+4a^2
4a^2-8a-3 < = 0
d/4 = 4^2+4*3=16+12=28=(2√7)^2
a1=(4-2√7)/4=1-√7/2 ~ -0,323
a2=(4+2√7)/4=1+√7/2 ~ 2,323
a € [1-√7/2; 1+√7/2]
из 2 неравенства
а+1 > = a^2
a^2-a-1 < = 0
d=1+4=5
a1 = (1-√5)/2 ~ -0,618
a2 = (1+√5)/2 ~ 1,618
a € [(1-√5)/2; (1+√5)/2]
ответ: a € [1-√7/2; (1+√5)/2]