175 км/ч
Пошаговое объяснение:
В условии данного задания указано, что необходимо найти расстояние, которое проплывет теплоход против течения реки.
Если теплоход плывет против течения реки, значит это течение мешает ему. Следовательно, его скорость уменьшается на скорость течения реки.
Узнаем скорость теплохода против течения реки: 35 км/ч - 2 км/ч = 33 км/ч.
А теперь умножим скорость на указанное время, чтобы узнать, сколько теплоход сможет проплыть против течения реки:
35 км/ч * 5 часов = 175 километров.
ответ: 175 километров.
9x²+5y²+18x–30y+9=0
1. Определение типа кривой.
квадратичная форма
B = 9x² + 5y²
приводим к каноническому виду
матрица этой квадратичной формы:
9 0
0 5
собственные числа и собственные векторы этой матрицы
(9 - λ)*х₁+ 0y₁ = 0
0x₁ + (5 - λ)y₁ = 0
характеристическое уравнение
λ² - 14λ + 45 = 0 ⇒ λ₁ = 9; λ₂=5
λ₁ > 0; λ₂ > 0 - это эллипс
теперь надо выделить полные квадраты
для х
9(x²+2x + 1) -9= 9(x+1)²-9
и для у
5(y²-2*3y + 3²) -5*3² = 5(y-3)²-45
и получим
9(x+1)²+5(y-3)² = 45
делим на 45 и получаем каноническое уравнение эллипса
2) координаты фокусов, вершин и центра
центр C(-1; 3)
полуоси
меньшая a = √5;
большая b= 9
координаты фокусов
F₁(-c;0) и F₂(c;0), где c - половина расстояния между фокусами
координаты фокусов F₁(-2;0) и F₂(2;0)
с учетом центра, координаты фокусов равны: F₁(-1;1) и F₂(-1;5)
вершины
х = -1; (у-3)²=9 ⇒ у₁ = 0, у₂ = 6
тогда вершины по оси оу (-1; 0) (-1; 6)
у= 3; (х+1)²=5 ⇒ х₁ = -1+√5 ≈1,24; х₂ = -1-√5 ≈ -3,24
и тогда вершины по оси ох (-1+√5; 3) (-1-√5; 3)
175 км/ч
Пошаговое объяснение:
В условии данного задания указано, что необходимо найти расстояние, которое проплывет теплоход против течения реки.
Если теплоход плывет против течения реки, значит это течение мешает ему. Следовательно, его скорость уменьшается на скорость течения реки.
Узнаем скорость теплохода против течения реки: 35 км/ч - 2 км/ч = 33 км/ч.
А теперь умножим скорость на указанное время, чтобы узнать, сколько теплоход сможет проплыть против течения реки:
35 км/ч * 5 часов = 175 километров.
ответ: 175 километров.
Пошаговое объяснение:
9x²+5y²+18x–30y+9=0
1. Определение типа кривой.
квадратичная форма
B = 9x² + 5y²
приводим к каноническому виду
матрица этой квадратичной формы:
9 0
0 5
собственные числа и собственные векторы этой матрицы
(9 - λ)*х₁+ 0y₁ = 0
0x₁ + (5 - λ)y₁ = 0
характеристическое уравнение
λ² - 14λ + 45 = 0 ⇒ λ₁ = 9; λ₂=5
λ₁ > 0; λ₂ > 0 - это эллипс
теперь надо выделить полные квадраты
для х
9(x²+2x + 1) -9= 9(x+1)²-9
и для у
5(y²-2*3y + 3²) -5*3² = 5(y-3)²-45
и получим
9(x+1)²+5(y-3)² = 45
делим на 45 и получаем каноническое уравнение эллипса
2) координаты фокусов, вершин и центра
центр C(-1; 3)
полуоси
меньшая a = √5;
большая b= 9
координаты фокусов
F₁(-c;0) и F₂(c;0), где c - половина расстояния между фокусами
координаты фокусов F₁(-2;0) и F₂(2;0)
с учетом центра, координаты фокусов равны: F₁(-1;1) и F₂(-1;5)
вершины
х = -1; (у-3)²=9 ⇒ у₁ = 0, у₂ = 6
тогда вершины по оси оу (-1; 0) (-1; 6)
у= 3; (х+1)²=5 ⇒ х₁ = -1+√5 ≈1,24; х₂ = -1-√5 ≈ -3,24
и тогда вершины по оси ох (-1+√5; 3) (-1-√5; 3)