Пошаговое объяснение:
произведение равно 0,когда один из множителей равен 0,поэтому решение очень простое.
-5(х+5)=0 3,7(4,6+у)=0 -3\4(15 2\3 -х)=0
х+5=0 4,6+у=0 15 2\3 -х=0
х=-5 у=-4,6 х=15 2\3
1 3\7 (х- 3 1\4)=0
х- 3 1\4=0
х= 3 1\4
(х-5 1\3) (х+ 4 2\7)=0
(х-5 1\3)=0 (х+ 4 2\7)=0
х= 5 1\3 х= - 4 2\7
(х+5,6)(х+ 8 1\12)=0
(х+5,6)=0 (х+ 8 1\12)=0
х= -5,6 х= - 8 1\12
где a, b, c – стороны треугольника
S – площадь треугольника
Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна: x√2.
А площадь треугольника будет равна 0,5х².
Значит 2 = (2*0.5x²)/(x+x+x√2) = x²/(x(2+√2)) = x/(2+√2).
Сторона х = 4+2√2.
Таким образом, гипотенуза будет равна: с = (4+2√2)*√2 =
= 4+4√2 = 4(1+√2).
Можно выразить так: с ≈ 4(1+1,414214) ≈ 9,656854.
2) Так как центр вписанной окружности лежит на биссектрисе острого угла, то с = 2*r/(tg(45/2).
tg(45/2) можно взять из таблиц или выразить так:
.
Результат тот же: с ≈ 9,656854.
Пошаговое объяснение:
произведение равно 0,когда один из множителей равен 0,поэтому решение очень простое.
-5(х+5)=0 3,7(4,6+у)=0 -3\4(15 2\3 -х)=0
х+5=0 4,6+у=0 15 2\3 -х=0
х=-5 у=-4,6 х=15 2\3
1 3\7 (х- 3 1\4)=0
х- 3 1\4=0
х= 3 1\4
(х-5 1\3) (х+ 4 2\7)=0
(х-5 1\3)=0 (х+ 4 2\7)=0
х= 5 1\3 х= - 4 2\7
(х+5,6)(х+ 8 1\12)=0
(х+5,6)=0 (х+ 8 1\12)=0
х= -5,6 х= - 8 1\12
1) Воспользуемся формулой радиуса окружности вписанной в треугольник: r = 2S/(a+b+c)
где a, b, c – стороны треугольника
S – площадь треугольника
Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна: x√2.
А площадь треугольника будет равна 0,5х².
Значит 2 = (2*0.5x²)/(x+x+x√2) = x²/(x(2+√2)) = x/(2+√2).
Сторона х = 4+2√2.
Таким образом, гипотенуза будет равна: с = (4+2√2)*√2 =
= 4+4√2 = 4(1+√2).
Можно выразить так: с ≈ 4(1+1,414214) ≈ 9,656854.
2) Так как центр вписанной окружности лежит на биссектрисе острого угла, то с = 2*r/(tg(45/2).
tg(45/2) можно взять из таблиц или выразить так:
.
Результат тот же: с ≈ 9,656854.