Пусть X и Y - какие-то множества. Имеет место функция, определённая на множестве X со значениями на множестве Y, если в силу некоторого закона f каждому элементу x∈X ставится в соответствие один и только один элемент y∈Y.
Это записывается в виде
y = f(x).
Другими словами, с функции y = f(x) множество X отображается в множество Y. Поэтому функцию называют также отображением.
Например, авиапассажиры сидят в креслах салона пассажирского самолёта. Пусть X - множество пассажиров, а Y - множество кресел салона. Тогда возникает соответствие f : каждому пассажиру x∈X сопоставляется то кресло y = f(x), в котором он сидит.
Наблюдается, таким образом, простой пример функции, областью определения которой является множество X пассажиров, а областью значений - множество f(X) занимаемых ими кресел. Если заполнены не все кресла Y, то множество значений функции будет подмножеством Y, не совпадающим со всем множеством Y.
Если в кресле находятся два пассажира и (например, мать и ребёнок), то это никак не противоречит определению функции f, которая и , и однозначно ставит в соответствие кресло . При этом такая функция принимает одно и то же значение при разных значениях и аргумента, подобно тому как числовая функция y = f(x) = x² принимает одно и то же значение 9 при x = - 3 и при x = 3.
Если, однако, какому-то пассажиру удастся сесть сразу в два кресла и , то нарушится принцип однозначной определённости значений функции, поэтому такая ситуация не является функциональной в смысле данного выше определения функций, поскольку требуется, чтобы каждому значению x аргумента соответствовало бы одно определённое значение y = f(x) функции.
В математическом анализе часто X обозначают как D (область определения функции), а Y как E (область значений функции) и при этом D и E называют подмножествами R (множества действительных чисел). На сайте есть урок Как найти область определения функции.
Как нетрудно догадаться по названию нашего сайта, он назван так в честь функции от икса или f(x). И это неслучайно. Функции составляют бОльшую часть предметов рассмотрения не только математического анализа, но и дискретной математики, а также широко используются в программировании, где от профессионалов требуется выделять однотипные вычисления в функции.
Пример 1. Даны множества A = {a, b, c, d, e} и L = {l, m, n}. Можно ли между элементами этих множеств установить такое соответствие, чтобы оно было функцией? Если да, то записать это соответствие, указав стрелками, какой элемент какому соответствует.
Решение. Итак, множество A содержит 5 элементов, а множество L - 3 элемента. Если мы поставим стрелки, ведущие от каждого элемента множества L к элементам множества A, то некоторым элементам L будут соответствовать более одного элемента A. Такое соответствие не является функцией по определению. Но если мы проведём стрелки от элементов A к элементам L, то некоторым элементам A будут соответствовать одни и те же элементы L, но при этом каждому элементу A будет соответствовать не более одного элемента L. Такое соответствие не противоречит определение функции, следовательно, ответ на вопрос задания - положительный.
Можно задать, например, такое соответствите между элементами данных множеств, которое будет функцией:
Рассмотрим для начала простой пример с четным количеством суммируемых чисел: 1+2+3+4+5+6 = ? Можно увидеть, что при суммировании сначала крайних чисел 1 и 6, а потом следующих, расположенных от края ближе к "центру" чисел и так далее, создаются пары с одинаковой суммой: 1+6=7 2+5=7 3+4=7 Шесть чисел создают три пары чисел, каждая пара образует сумму, равную 7. 1+2+3+4+5+6 = (1+6)•3=7•3=21 При четном количестве чисел получается четное количество пар, а сумма получилась нечетная.
Теперь рассмотрим для начала простой пример с нечетным количеством суммируемых чисел:: 1+2+3+4+5+6+7 = ? Можно увидеть, что при суммировании сначала крайних чисел 1 и 7, а потом следующих, расположенных от края ближе к "центру" чисел и так далее, создаются пары с одинаковой суммой: 1+7=8 2+6=8 3+5=8 4+? И остается одинокое число 4, которому не нашлось пары. Семь чисел создают три пары чисел, каждая пара образует сумму, равную 8, и одинокое центральное в ряду суммируемых чисел число 4 1+2+3+4+5+6+7 = (1+7)•3+4=8•3+4= =24+4=28 При нечетном количестве чисел получается четное количество пар, плюс одинокое центральное число, а сумма получилась четная.
Пусть n - последнее число, значит в левой части n чисел. По аналогии с приведенными примерами поскольку сумма четная, то n - нечетное число.Значит, в решаемой задаче будет (n-1)/2 пар чисел
1+2+3+4+5+6+... + n = 404000
Сумма каждой пары чисел по аналогии с приведенным примером будет равна сумме крайних чисел, то есть 1+n.
И еще должно быль одинокое центральное число, которое можно записать как: (n+1)/2
Пошаговое объяснение:
Пусть X и Y - какие-то множества. Имеет место функция, определённая на множестве X со значениями на множестве Y, если в силу некоторого закона f каждому элементу x∈X ставится в соответствие один и только один элемент y∈Y.
Это записывается в виде
y = f(x).
Другими словами, с функции y = f(x) множество X отображается в множество Y. Поэтому функцию называют также отображением.
Например, авиапассажиры сидят в креслах салона пассажирского самолёта. Пусть X - множество пассажиров, а Y - множество кресел салона. Тогда возникает соответствие f : каждому пассажиру x∈X сопоставляется то кресло y = f(x), в котором он сидит.
Наблюдается, таким образом, простой пример функции, областью определения которой является множество X пассажиров, а областью значений - множество f(X) занимаемых ими кресел. Если заполнены не все кресла Y, то множество значений функции будет подмножеством Y, не совпадающим со всем множеством Y.
Если в кресле находятся два пассажира и (например, мать и ребёнок), то это никак не противоречит определению функции f, которая и , и однозначно ставит в соответствие кресло . При этом такая функция принимает одно и то же значение при разных значениях и аргумента, подобно тому как числовая функция y = f(x) = x² принимает одно и то же значение 9 при x = - 3 и при x = 3.
Если, однако, какому-то пассажиру удастся сесть сразу в два кресла и , то нарушится принцип однозначной определённости значений функции, поэтому такая ситуация не является функциональной в смысле данного выше определения функций, поскольку требуется, чтобы каждому значению x аргумента соответствовало бы одно определённое значение y = f(x) функции.
В математическом анализе часто X обозначают как D (область определения функции), а Y как E (область значений функции) и при этом D и E называют подмножествами R (множества действительных чисел). На сайте есть урок Как найти область определения функции.
Как нетрудно догадаться по названию нашего сайта, он назван так в честь функции от икса или f(x). И это неслучайно. Функции составляют бОльшую часть предметов рассмотрения не только математического анализа, но и дискретной математики, а также широко используются в программировании, где от профессионалов требуется выделять однотипные вычисления в функции.
Пример 1. Даны множества A = {a, b, c, d, e} и L = {l, m, n}. Можно ли между элементами этих множеств установить такое соответствие, чтобы оно было функцией? Если да, то записать это соответствие, указав стрелками, какой элемент какому соответствует.
Решение. Итак, множество A содержит 5 элементов, а множество L - 3 элемента. Если мы поставим стрелки, ведущие от каждого элемента множества L к элементам множества A, то некоторым элементам L будут соответствовать более одного элемента A. Такое соответствие не является функцией по определению. Но если мы проведём стрелки от элементов A к элементам L, то некоторым элементам A будут соответствовать одни и те же элементы L, но при этом каждому элементу A будет соответствовать не более одного элемента L. Такое соответствие не противоречит определение функции, следовательно, ответ на вопрос задания - положительный.
Можно задать, например, такое соответствите между элементами данных множеств, которое будет функцией:
1+2+3+4+5+6 = ?
Можно увидеть, что при суммировании сначала крайних чисел 1 и 6, а потом следующих, расположенных от края ближе к "центру" чисел и так далее, создаются пары с одинаковой суммой:
1+6=7
2+5=7
3+4=7
Шесть чисел создают три пары чисел, каждая пара образует сумму, равную 7.
1+2+3+4+5+6 = (1+6)•3=7•3=21
При четном количестве чисел получается четное количество пар, а сумма получилась нечетная.
Теперь рассмотрим для начала простой пример с нечетным количеством суммируемых чисел::
1+2+3+4+5+6+7 = ?
Можно увидеть, что при суммировании сначала крайних чисел 1 и 7, а потом следующих, расположенных от края ближе к "центру" чисел и так далее, создаются пары с одинаковой суммой:
1+7=8
2+6=8
3+5=8
4+?
И остается одинокое число 4, которому не нашлось пары.
Семь чисел создают три пары чисел, каждая пара образует сумму, равную 8, и одинокое центральное в ряду суммируемых чисел число 4
1+2+3+4+5+6+7 = (1+7)•3+4=8•3+4=
=24+4=28
При нечетном количестве чисел получается четное количество пар, плюс одинокое центральное число, а сумма получилась четная.
Пусть n - последнее число, значит в левой части n чисел.
По аналогии с приведенными примерами поскольку сумма четная, то n - нечетное число.Значит, в решаемой задаче будет (n-1)/2 пар чисел
1+2+3+4+5+6+... + n = 404000
Сумма каждой пары чисел по аналогии с приведенным примером будет равна сумме крайних чисел, то есть 1+n.
И еще должно быль одинокое центральное число, которое можно записать как:
(n+1)/2
Итак, можно составить уравнение:
(1+n) • (n-1)/2 + (n+1)/2 = 404000
(n+1) • ((n-1)/2 + 1/2) = 404000
(n+1) • n/2 = 404000
(n+1) • n = 404000
n^2 + n - 404000 = 0
D = 1^2 -4•(-404000)
= 1 + 1616000 = 1616001
Корень из 1616001 = 1271,22029
= примерно 1271
n1 = (-1+1271)/2 = 1270/2=примерно 635 чисел
n2 = (-1-1271)/2=-1272/2=-636 - не подходит, поскольку количество чисел не может быть отрицательным.
Мне кажется, у Вас ошибка в условии, так как здесь не должно быть приблизительного ответа...