Чтобы найти НОД нескольких чисел, нужно разложить эти числа на множители и найти произведение их СОВМЕСТНЫХ множителей, взятых с НАИМЕНЬШИМ показателем степени.
38 = 2 * 19
48 = (2*2*2*2) * 3
102 = 2 * 3 * 17
НОД (38, 48,102) = 2 - наибольший общий делитель
50 = 2 * (5*5)
75 = 3 * (5*5)
250 = 2 * (5*5*5)
НОД (50,75,250) = (5*5) = 25 - наибольший общий делитель
Чтобы найти НОК нескольких чисел, нужно разложить эти числа на множители и найти произведение ВСЕХ множителей, взятых с НАИБОЛЬШИМ показателем степени.
Само число - 10а+в
а^2 + в^2 = 45
10а+в - 27 = 10в+а
Упростим второе уравнение:
10а+в-10в-а = 27
9а - 9в = 27
9(а-в) = 27
а-в = 27:9
а-в=3
Выразим а через в:
а=в+3
Подставим в первое уравнение:
а^2 + в^2 = 45
(в+3)^2 + в^2 = 45
в^2 + 6в + 9 + в^2 - 45 = 0
2в^2 + 6в - 36 = 0
Сократим уравнение на 2:
в^2 + 3в - 18 = 0
Дискриминант:
3^2 + 4•18 = 9 + 72 = 81
Корень из дискриминанта = корень из 81 = 9
в1 = (-3+9)/2 = 6/2 = 3,
Следовательно, а1= в+3 = 3+3 = 6
в2 = (-3-9)/2 = -12/2 = -6
Следовательно, а2 = в+3 = -6+3 = -3
Отсюда следует, что число:
10а+в = 10•6 + 3 = 63
Проверка:
6^2 + 3^2 = 36+9=45
63-27=36
Или
10а+в = -3•10 - 6 = -36
Проверка:
(-3)^2 + (-6)^2 = 9+36=45
-36 -27 = -63
Чтобы найти НОД нескольких чисел, нужно разложить эти числа на множители и найти произведение их СОВМЕСТНЫХ множителей, взятых с НАИМЕНЬШИМ показателем степени.
38 = 2 * 19
48 = (2*2*2*2) * 3
102 = 2 * 3 * 17
НОД (38, 48,102) = 2 - наибольший общий делитель
50 = 2 * (5*5)
75 = 3 * (5*5)
250 = 2 * (5*5*5)
НОД (50,75,250) = (5*5) = 25 - наибольший общий делитель
44 = (2*2) * 11
110 = 2 * 5 * 11
154 = 2 * 7 * 11
НОД (44, 110, 154) = 2 * 11 = 22 - наибольший общий делитель
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Чтобы найти НОК нескольких чисел, нужно разложить эти числа на множители и найти произведение ВСЕХ множителей, взятых с НАИБОЛЬШИМ показателем степени.
60 = (2*2) * 3 * 5
24 = (2*2*2) * 3
36 = (2*2) * (3*3)
НОК (60, 24, 36) = (2*2*2) * (3*3) * 5 = 360 - наименьшее общее кратное
36 = (2*2) * (3*3)
90 = 2 * (3*3) * 5
200 = (2*2*2) * (5*5)
НОК (36, 90, 200) = (2*2*2) * (3*3) * (5*5) = 1800 - наименьшее общее кратное
90 = 2 * (3*3) * 5
60 = (2*2) * 3 * 5
135 = (3*3*3) * 5
НОК (90, 60, 135) = (2*2) * (3*3*3) * 5 = 540 - наименьшее общее кратное
Пошаговое объяснение: