Студент 5 жылда 31 емтихан тапсырды. Емтихан саны әр жыл сайын алдыңғы жылдағыдан артып отырған. Бесінші курста тапсырған емтихан саны бірінші курстағыдан екі есе артық болды. 4-ші курста ол қанша емтихан тапсырған? *
1. Две прямые, образующие при пересечении прямые углы, называют перпендикулярными. 2. Параллельными (иногда — равнобежными) прямыми называются прямые, которые лежат в одной плоскости и либо совпадают, либо не пересекаются. 3. Плоскость, на которой выбрана система координат, называют координатной плоскостью. 4. Осева́я симме́три́я — тип симметрии, имеющий несколько отличающихся определений: Отражение, Вращательная симметрия, Осевая симметрия n-го порядка, Зеркально поворотная осевая симметрия n-го порядка. 5. Симметрию относительно точки называют центральной симметрией. 6. Ось симметрии – это линия, делящая изображение на одинаковые половинки 7,8 Точка абсцисса (по координатам она идёт первой) лежит горизонтально на оси X, а ордината (по координатам она идёт второй) вертикально Y
Поскольку дискриминант отрицательный, значит уравнение решений не имеет.
ответ: нельзя представить.
Задача №2
Пусть производительность ученика х, тогда производительность токаря 2х. Общая производительность будет (х+2х) Время на выполнение задания 9 часов. Время работы ученика будет t, а время работы токаря (9-t) . При одновременной работе задание выполняется за 4 часа , можем составить уравнение
n/(x+2x)=4,
где n- задание, которое надо выполнить.
n/(x+2x)=4
n/3x=4
n=12x
При работе по очереди получим
xt+2x(9-t)=12x
xt+18x-2xt-12x=0
6x- xt=0
x(6-t)=0
x=0
6-t=0
t=6 часов время работы ученика
9-6=3 часа время работы токаря.
Учитывая , что производительность труда токаря в 2 раза больше, значит ученик выполнил половину работы.
ответ:1/2 часть работы выполнил ученик
Задача №3
попаданий в 10 было четыре , значит 4*10=40 очков
90-40=50 очков набрал при попадании в 7,8 и 9
За остальные шесть выстрелов он мог попасть в семерку, восьмерку и девятку 7+8+9=24 очка, остается 50-24=26 очков и три выстрела. Значит он мог попасть 8+9+9=26 очков.
ответ: 1 раз в семерку, два раза в восьмерку и три раза в девятку
Задача №4
При правильной игре выиграет первый игрок. Пусть первый игрок берет по 99 монет , а второй по 100 монет, тогда через 20 ходов, на столе останется
2005-(10*99+10*100)=15 монет. В любом случае в конце на столе будет оставаться нечетное количество монет. Последний ход будет первого игрока , а он может брать нечетное число монет. Значит он выиграет.
Задача №5
Попробуем вычислить сколько воды будет после нескольких переливаний
1).1-1/2=1/2
2)1/2+1/3=5/6
3)5/6-1/3=3/6=1/2
4)1/2+1/4=3/4
5)3/4-1/4=1/2
6)1/2+1/6=4/6=2/3
7)2/3-1/6=3/6=1/2
8)1/2+1/8=5/8
9)5/8-1/8=4/8=1/2
Как видим сколько забираем из сосуда , столько же и возвращаем в него на нечетном шаге. У нас всего 2007 переливаний, цифра 2007 нечетная, следовательно на 2007 шаге в сосудах будет по ½ л воды
2. Параллельными (иногда — равнобежными) прямыми называются прямые, которые лежат в одной плоскости и либо совпадают, либо не пересекаются.
3. Плоскость, на которой выбрана система координат,
называют координатной плоскостью.
4. Осева́я симме́три́я — тип симметрии, имеющий несколько отличающихся определений: Отражение, Вращательная симметрия, Осевая симметрия n-го порядка, Зеркально поворотная осевая симметрия n-го порядка.
5. Симметрию относительно точки называют центральной симметрией.
6. Ось симметрии – это линия, делящая изображение на одинаковые половинки
7,8 Точка абсцисса (по координатам она идёт первой) лежит горизонтально на оси X, а ордината (по координатам она идёт второй) вертикально Y
Пошаговое объяснение:
Задача №1
Пусть искомые дроби будут 1/х и 1/у, тогда
2/7=1/х+1/у
2/7=(у+х)/ху
Получаем систему
х+у=2
ху=7
х=2-у, тогда
(2-у)у=7
2у-у²-7=0
y²-2y+7=0
D=-2²-4*7=4-28=-24
Поскольку дискриминант отрицательный, значит уравнение решений не имеет.
ответ: нельзя представить.
Задача №2
Пусть производительность ученика х, тогда производительность токаря 2х. Общая производительность будет (х+2х) Время на выполнение задания 9 часов. Время работы ученика будет t, а время работы токаря (9-t) . При одновременной работе задание выполняется за 4 часа , можем составить уравнение
n/(x+2x)=4,
где n- задание, которое надо выполнить.
n/(x+2x)=4
n/3x=4
n=12x
При работе по очереди получим
xt+2x(9-t)=12x
xt+18x-2xt-12x=0
6x- xt=0
x(6-t)=0
x=0
6-t=0
t=6 часов время работы ученика
9-6=3 часа время работы токаря.
Учитывая , что производительность труда токаря в 2 раза больше, значит ученик выполнил половину работы.
ответ:1/2 часть работы выполнил ученик
Задача №3
попаданий в 10 было четыре , значит 4*10=40 очков
90-40=50 очков набрал при попадании в 7,8 и 9
За остальные шесть выстрелов он мог попасть в семерку, восьмерку и девятку 7+8+9=24 очка, остается 50-24=26 очков и три выстрела. Значит он мог попасть 8+9+9=26 очков.
ответ: 1 раз в семерку, два раза в восьмерку и три раза в девятку
Задача №4
При правильной игре выиграет первый игрок. Пусть первый игрок берет по 99 монет , а второй по 100 монет, тогда через 20 ходов, на столе останется
2005-(10*99+10*100)=15 монет. В любом случае в конце на столе будет оставаться нечетное количество монет. Последний ход будет первого игрока , а он может брать нечетное число монет. Значит он выиграет.
Задача №5
Попробуем вычислить сколько воды будет после нескольких переливаний
1).1-1/2=1/2
2)1/2+1/3=5/6
3)5/6-1/3=3/6=1/2
4)1/2+1/4=3/4
5)3/4-1/4=1/2
6)1/2+1/6=4/6=2/3
7)2/3-1/6=3/6=1/2
8)1/2+1/8=5/8
9)5/8-1/8=4/8=1/2
Как видим сколько забираем из сосуда , столько же и возвращаем в него на нечетном шаге. У нас всего 2007 переливаний, цифра 2007 нечетная, следовательно на 2007 шаге в сосудах будет по ½ л воды