Суммативное оценивание за раздел «Статистика. Комбинаторика. Зависимость между величинами»
В ряду чисел 4,9,10, 18,19,18,26, 14 найдите:
а) среднее арифметическое, б) размах,
в) мода, г) медиану (4)
На обед в столовой предлагается 2 супа, 2 вторых блюда и 4 разных сока. Сколько различных вариантов обеда из трех блюд можно составить по предложенному меню? Постройте дерево вариантов. (3)
Выберите формулы, задающие прямо пропорциональную зависимость (3)
У=5х
У=4/х
У = -2,3х
У = х+5
У = 1,2х
Постройте график прямой пропорциональности: у= 2х (3)
244262
Пошаговое объяснение:
Заметим, что если из каждой цифры наших чисел вычесть 1, то у нас получатся подряд идущие числа в шестеричной записи :
доказательство этого:
наши числа состоят из цифр от 1 до 6
1111111
11111111111112
11111111111112...
11111111111112...1111116
11111111111112...11111161111121
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:0000000
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...0000005
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010и мы видим, что n-ое число соответствует записи числа (n-1) в шестеричной системе счисления, дополненной вначале нулями до 7 цифр
Пользуясь переводом из 10-системы в 6-стстему (смотри прикрепленное изображение заметим, что
12379 (10)= 133151 (6)
—›Таким будет 12379-е число в шестеричной записи, так как мы считаем с 0. Не забудем прибавить единицу, так как мы отнимаем ее из каждого разряда.
то есть получаем число 244262
244262
Пошаговое объяснение:
Заметим, что если из каждой цифры наших чисел вычесть 1, то у нас получатся подряд идущие числа в шестеричной записи :
доказательство этого:
наши числа состоят из цифр от 1 до 6
1111111
11111111111112
11111111111112...
11111111111112...1111116
11111111111112...11111161111121
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:0000000
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...0000005
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010и мы видим, что n-ое число соответствует записи числа (n-1) в шестеричной системе счисления, дополненной вначале нулями до 7 цифр
Пользуясь переводом из 10-системы в 6-стстему (смотри прикрепленное изображение заметим, что
12379 (10)= 133151 (6)
—›Таким будет 12379-е число в шестеричной записи, так как мы считаем с 0. Не забудем прибавить единицу, так как мы отнимаем ее из каждого разряда.
то есть получаем число 244262