Tekcept
е озімнің жетістіктерімді тексеремін.
цорындалу рен
алу ретін
БІЛУ
разрядтарының
біреуі нөл бола-
тын жағдайда үш
таңбалы санды
бір таңбалы санға
азбаша көбейту
асоне бөлу алго-
итмін білемін.
1. Баган түрінде жаз көне есете -
430 - 2
103 : 3
107.5
640 : 2
303 : 3
760 : 5
398) – 640 : 5
876) +355.
86) - 660 : 5
390 : 2
ТҮСІНУ
Жазбаша есептеп,
дұрыстығын тек-
сере аламын.
4. Баған түрінде жаз және есепте.
Дұрыстығын тексер.
120 - 3 304 : 2
420 : 2 804 : 4
ық аулады.
улады. Егер
ндай балык
ңкеде жок;
тамады;
2 алабұға
қолДАНУ
Разрядтарының
біреуі нөл бола-
тын жағдайда үш
таңбалы санды
бір таңбалы санға
Баған түрінде жазып, амалдардың орындалу
реті бойынша өрнектің мәнін тап.
209 - 3 + 636 : 6
кем болса,
MYT
ответ: 43
Пошаговое объяснение:
p^3 + 4p^2 + 4p = p(p+2)^2
Пусть p нечетно, то есть p отлично от двух, тогда p и p+2 - взаимнопростые.
У простого числа p два делителя: p и 1, тогда поскольку 1 единственный общий делитель с p+2 или (p+2)^2, то если (p+2)^2 имеет n делителей:
d1=1,d2,d3,...,dn = (p+2)^2, то число p(p+2)^2 имеет делители:
d1=1, d2, d3,..., dn = (p+2)^2, pd1=p, pd2, pd3,..., pdn = p(p+2)^2 - имеет 2n делителей, тогда (p+2)^2 имеет ровно 30/2 = 15 делителей.
Пусть: p1, p2, p3,..., pk - простые делители числа (p+2)^2 в произвольном порядке, а поскольку (p+2)^2 - полный квадрат, то каждое простое число из множества p1, p2, p3,..., pk встречаются четное число раз в разложении числа (p+2)^2 на простые множители.
Пусть каждое из чисел p1, p2, p3,..., pk встречается :
2n1, 2n2, 2n3,..., 2nk раз cоответственно, тогда из комбинаторных соображений общее число делителей числа (p+2)^2 равно: (у числа p+2 они встречаются n1,n2,n3,..., nk раз)
(2n1 + 1)(2n2+1)(2n3 + 1)...(2nk + 1) = 15 = 5*3
5*3 имеет 4 положительных делителя: 1,3,5,15. 1 не подходит, ибо 2ni + 1 >=3
То есть имеем два варианта. У числа (p+2)^2 только 2 простых делителя, каждый из которых встречается n1 и n2 раза:
2n1 + 1 = 3
n1 = 1
2n2 + 1 = 5
n2 = 2
Иначе говоря:
p+2 = p1*p2^2
Или второй вариант:
у числа (p+2) один простой делитель, что встречается n1 раз :
2n1 +1 = 15
n1 = 7
p+2 = p1^7
Рассмотрим первый случай:
p+2 = p1*p2^2
p = p1*p2^2 - 2
Минимально возможные нечетные p1 и p2: p1 = 3; p2 = 5.
Нетрудно заметить, что 5*3^2 - 2 = 43 - простое, а значит
p = 5*3^2 - 2 = 43 - минимальное нечетное простое число удовлетворяющее условию при данном варианте.
Второй случай рассматривать нет смысла, ибо :
p = p1^7 - 2 >= 3^7 - 2 > 43
Осталось проверить тривиальный случай p = 2
p(p+2)^2 = 2*4^2 = 2^5 - имеет 6 делителей.
Таким образом, наименьшее простое число p такое, что p^3+4p^2+4p имеет ровно 30 положительных делителей это 43.
36 и 72
Пошаговое объяснение:
Находим наименьшее общее кратное (НОК) чисел 9 и 12. Для этого представим каждое из этих чисел в виде произведения простых сомножителей:
9 = 3 * 3,
12 = 4 * 3 = 2 * 2 * 3.
Берем сомножители, входящие в разложение числа 12 и добавляем сомножители, входящие в разложение числа 9 и не входящие в разложение числа 12:
НОК(9,12) = 2 * 2* 3 * 3 = 4 * 9 = 36.
Следующее по величине общее кратное чисел 9 и 12 получаем, умножая НОК этих чисел на 2:
36 * 2 = 72.
Следующее по величине общее кратное чисел 9 и 12 получаем, умножая НОК этих чисел на 3:
36 * 3 = 108.
Это и все последующие кратные чисел 9 и 12 больше чем 100.
Следовательно, есть 2 общих кратных чисел 9 и 12, меньшие, чем 100. Это число 36 и 72.