Проведем высоты. Прямоугольные треугольники AED и BFC равны по гипотенузе и катету (AD = BC = 4 по условию, DE = CF - высоты трапеции). Поэтому AE = FB.
EFCD - параллелограмм (СD || EF - основания трапеции, DE || CF - так как это перпендикуляры, проведённые к одной прямой AB). Значит, EF = CD.
AB = AE + EF + FB = 2 AE + CD, откуда AE = (AB - CD)/2 = (8 - 4)/2 = 2.
Рассмотрим треугольник AED. Он прямоугольный, и в нём известны гипотенуза AD = 4 и катет AE = 2. Тогда по теореме Пифагора DE = √(AD² - AE²) = 2√(2² - 1²) = 2√3.
F(x)=2^(1/(x-6)) Ф-ція f(x) є неперервною в т. х_0, якщо lim_(x->x_0) f(x) = f(x_0) lim_(x->6) 2^(1/(x-6)) lim_(x->6-) 2^(1/(x-6)) = 1 (зліва) lim_(x->6+) 2^(1/(x-6)) = неск (зправа) В т. х_0=6 - розрив ф-ції - тобто вона не є неперервною.
lim_(x->0) 2^(1/(x-6)) = 1/2^(1/6) f(0)=1/2^(1/6) Ф-ція є неперевною в т.х_0=0
EFCD - параллелограмм (СD || EF - основания трапеции, DE || CF - так как это перпендикуляры, проведённые к одной прямой AB). Значит, EF = CD.
AB = AE + EF + FB = 2 AE + CD, откуда AE = (AB - CD)/2 = (8 - 4)/2 = 2.
Рассмотрим треугольник AED. Он прямоугольный, и в нём известны гипотенуза AD = 4 и катет AE = 2. Тогда по теореме Пифагора DE = √(AD² - AE²) = 2√(2² - 1²) = 2√3.
ответ. 2√3
Ф-ція f(x) є неперервною в т. х_0, якщо lim_(x->x_0) f(x) = f(x_0)
lim_(x->6) 2^(1/(x-6))
lim_(x->6-) 2^(1/(x-6)) = 1 (зліва)
lim_(x->6+) 2^(1/(x-6)) = неск (зправа)
В т. х_0=6 - розрив ф-ції - тобто вона не є неперервною.
lim_(x->0) 2^(1/(x-6)) = 1/2^(1/6)
f(0)=1/2^(1/6)
Ф-ція є неперевною в т.х_0=0
lim_(x->6-) 2^(1/(x-6)) :
f(4)=0,7
f(4,5)=0,6
f(5)=0,5
f(5,5)=0,25
f(5,7)0,99
lim_(x->6-) 2^(1/(x-6))=0
lim_(x->6+) 2^(1/(x-6)):
f(10)=1,18
f(9)=1,2
f(8)=1,4
f(7)=2
f(6,5)=4
f(6,4)=5,6
f(6,3)=10
f(6,2)=32
f(6,1)=1024
f(6,05)=1048576
lim_(x->6+) 2^(1/(x-6)) = неск.
lim_(x->0) 2^(1/(x-6)) = 1/2^(1/6)
f(0)=1/2^(1/6)
Рахуються, як звичайний вираз.