у секції плавання тренуються 6 юнаків і 4 дівчини. На змагання потрібно відправити команду з 3 юнаків і 2 дівчат. Скількома тренери можуть скласти таку команду, якщо всі плавці мають приблизно однакову фізичну форму?
В правильной четырехугольной пирамиде SABCD все ребра равны 1. Точка F – середина ребра AS.
а) Постройте прямую пересечения плоскостей SAD и BCF.
б) Найдите угол между плоскостями SAD и BCF.
Задание14в25_1
а) Постройте прямую пересечения плоскостей SAD и BCF.
Построим плоскость (BCF). Прямая BC параллельна AD, AD лежит в плоскости (ADS), следовательно, BC параллельна плоскости (ADS). Точка F лежит в плоскостях (BCF) и (ADS). Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. В данном случае плоскость BCF пересекает плоскость ADS по прямой EF, параллельно ВС. Прямая EF – искомая прямая пересечения плоскостей SAD и BCF.
б) Найдите угол между плоскостями SAD и BCF.
Плоскость сечения (BCF) есть равнобедренная трапеция BCEF. Проведем высоту ЕМ трапеции BCEF. Из точки Е проведем перпендикуляр ЕК к стороне AD. Угол ∠МЕК – угол между плоскостями SAD и BCF. Найдем величину этого угла. Так как за величину угла между двумя плоскостями берется величина острого двугранного угла (взят модуль), по теореме косинусов найдем величину угла ∠МЕК, получим
MK2 = ME2 + EK2 — 2·ME·EK·cos∠МЕК
Задание14в25_2 (1)
MK = AB = 1
Так как точка F – середина SA и EF II AD, то EF – средняя линия треугольника ∆SAD.
СЕ – медиана и высота треугольника ∆SCD. Из прямоугольного треугольника ∆CED найдем СЕ:
CE2 = CD2 – ED2
CE2 = 12 – (1/2)2 = 3/4
CE = √3/2
Из прямоугольного треугольника ∆СЕМ найдем МЕ:
МЕ2 = СЕ2 – МС2
МЕ2 = (√3/2)2 – (1/4)2 = 11/16
МЕ = √11/16
Из прямоугольного треугольника ∆EDK найдем ЕК:
EK2 = ED2 – DK2
ED = EF = 1/2
DK = MC = 1/4
EK2 = (1/2)2 – (1/4)2 = 3/16
EK = √3/4
В правильной четырехугольной пирамиде SABCD все ребра равны 1. Точка F – середина ребра AS.
а) Постройте прямую пересечения плоскостей SAD и BCF.
б) Найдите угол между плоскостями SAD и BCF.
Задание14в25_1
а) Постройте прямую пересечения плоскостей SAD и BCF.
Построим плоскость (BCF). Прямая BC параллельна AD, AD лежит в плоскости (ADS), следовательно, BC параллельна плоскости (ADS). Точка F лежит в плоскостях (BCF) и (ADS). Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. В данном случае плоскость BCF пересекает плоскость ADS по прямой EF, параллельно ВС. Прямая EF – искомая прямая пересечения плоскостей SAD и BCF.
б) Найдите угол между плоскостями SAD и BCF.
Плоскость сечения (BCF) есть равнобедренная трапеция BCEF. Проведем высоту ЕМ трапеции BCEF. Из точки Е проведем перпендикуляр ЕК к стороне AD. Угол ∠МЕК – угол между плоскостями SAD и BCF. Найдем величину этого угла. Так как за величину угла между двумя плоскостями берется величина острого двугранного угла (взят модуль), по теореме косинусов найдем величину угла ∠МЕК, получим
MK2 = ME2 + EK2 — 2·ME·EK·cos∠МЕК
Задание14в25_2 (1)
MK = AB = 1
Так как точка F – середина SA и EF II AD, то EF – средняя линия треугольника ∆SAD.
3x-x=15+3 7-11=x+3x 2x+6=x+13
2x=18 -4=4x 2x-x=13-6
x=18/2 -1=x x=7
x=9
4) 4(5-x)=3x-1 5) 3(x-2)=x+4 6) 5(x-1)=4x+3
20-4x=3x-1 3x-6=x+4 5x-5=4x+3
-3x-4x=-1-20 3x-x=4+6 5x-4x=5+3
7x=21 2x=10 x=8
x=21/7 x=5
x=3
В правильной четырехугольной пирамиде SABCD все ребра равны 1. Точка F – середина ребра AS.
а) Постройте прямую пересечения плоскостей SAD и BCF.
б) Найдите угол между плоскостями SAD и BCF.
Задание14в25_1
а) Постройте прямую пересечения плоскостей SAD и BCF.
Построим плоскость (BCF). Прямая BC параллельна AD, AD лежит в плоскости (ADS), следовательно, BC параллельна плоскости (ADS). Точка F лежит в плоскостях (BCF) и (ADS). Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. В данном случае плоскость BCF пересекает плоскость ADS по прямой EF, параллельно ВС. Прямая EF – искомая прямая пересечения плоскостей SAD и BCF.
б) Найдите угол между плоскостями SAD и BCF.
Плоскость сечения (BCF) есть равнобедренная трапеция BCEF. Проведем высоту ЕМ трапеции BCEF. Из точки Е проведем перпендикуляр ЕК к стороне AD. Угол ∠МЕК – угол между плоскостями SAD и BCF. Найдем величину этого угла. Так как за величину угла между двумя плоскостями берется величина острого двугранного угла (взят модуль), по теореме косинусов найдем величину угла ∠МЕК, получим
MK2 = ME2 + EK2 — 2·ME·EK·cos∠МЕК
Задание14в25_2 (1)
MK = AB = 1
Так как точка F – середина SA и EF II AD, то EF – средняя линия треугольника ∆SAD.
EF = 1/2AD = 1/2
Рассмотрим равнобедренную трапецию BCEF, найдем МС:
Задание14в25_3
СЕ – медиана и высота треугольника ∆SCD. Из прямоугольного треугольника ∆CED найдем СЕ:
CE2 = CD2 – ED2
CE2 = 12 – (1/2)2 = 3/4
CE = √3/2
Из прямоугольного треугольника ∆СЕМ найдем МЕ:
МЕ2 = СЕ2 – МС2
МЕ2 = (√3/2)2 – (1/4)2 = 11/16
МЕ = √11/16
Из прямоугольного треугольника ∆EDK найдем ЕК:
EK2 = ED2 – DK2
ED = EF = 1/2
DK = MC = 1/4
EK2 = (1/2)2 – (1/4)2 = 3/16
EK = √3/4
В правильной четырехугольной пирамиде SABCD все ребра равны 1. Точка F – середина ребра AS.
а) Постройте прямую пересечения плоскостей SAD и BCF.
б) Найдите угол между плоскостями SAD и BCF.
Задание14в25_1
а) Постройте прямую пересечения плоскостей SAD и BCF.
Построим плоскость (BCF). Прямая BC параллельна AD, AD лежит в плоскости (ADS), следовательно, BC параллельна плоскости (ADS). Точка F лежит в плоскостях (BCF) и (ADS). Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. В данном случае плоскость BCF пересекает плоскость ADS по прямой EF, параллельно ВС. Прямая EF – искомая прямая пересечения плоскостей SAD и BCF.
б) Найдите угол между плоскостями SAD и BCF.
Плоскость сечения (BCF) есть равнобедренная трапеция BCEF. Проведем высоту ЕМ трапеции BCEF. Из точки Е проведем перпендикуляр ЕК к стороне AD. Угол ∠МЕК – угол между плоскостями SAD и BCF. Найдем величину этого угла. Так как за величину угла между двумя плоскостями берется величина острого двугранного угла (взят модуль), по теореме косинусов найдем величину угла ∠МЕК, получим
MK2 = ME2 + EK2 — 2·ME·EK·cos∠МЕК
Задание14в25_2 (1)
MK = AB = 1
Так как точка F – середина SA и EF II AD, то EF – средняя линия треугольника ∆SAD.
EF = 1/2AD = 1/2
Рассмотрим равнобедренную трапецию BCEF, найдем МС:
Задание14в25_3
СЕ – медиана и высота треугольника ∆SCD. Из прямоугольного треугольника ∆CED найдем СЕ:
CE2 = CD2 – ED2
CE2 = 12 – (1/2)2 = 3/4
CE = √3/2
Из прямоугольного треугольника ∆СЕМ найдем МЕ:
МЕ2 = СЕ2 – МС2
МЕ2 = (√3/2)2 – (1/4)2 = 11/16
МЕ = √11/16
Из прямоугольного треугольника ∆EDK найдем ЕК:
EK2 = ED2 – DK2
ED = EF = 1/2
DK = MC = 1/4
EK2 = (1/2)2 – (1/4)2 = 3/16
EK = √3/4
Подставим полученные данные в формулу (1), получим
Задание14в25_4
ответ: Задание14в25_5