. У замку з «секретом» на спільній осі встановлено 4 диски, кожен з яких розділено на 5 секторів, на яких записані різні цифри. Замок відкривається
лише тоді, коли диски встановлені так, що цифри на них складають певне
чотиризначне число. Знайти ймовірність того, що при довільній установці
дисків замок відкриється
Система векторов a1,a2,...,an называется линейно зависимой, если существуют числа λ1,λ2,...,λn такие, что хотя бы одно из них отлично от нуля и λ1a1+λ2a2+...+λnan=0. В противном случае система называется линейно независимой.
Два вектора a1 и a2 называются коллинеарными если их направления совпадают или противоположны.
Три вектора a1,a2 и a3 называются компланарными если они параллельны некоторой плоскости.
Геометрические критерии линейной зависимости:
а) система {a1,a2} линейно зависима в том и только том случае, когда векторы a1 и a2 коллинеарны.
б) система {a1,a2,a3} линейно зависима в том и только том случае, когда векторы a1,a2 и a3 компланарны.
Примеры.
2.19.
Разложить вектор s=a+b+c по трем некомпланарным векторам: p=a+b−2c, q=a−b, r=2b+3c.
Решение.
Найдем такие α,β и γ, что s=αp+βq+γr:
s=a+b+c=α(a+b−2c)+β(a−b)+γ(2b+3c)=
=a(α+β)+b(α−β+2γ)+c(−2α+3γ).
Из этого равенства, приравнивая коэффициенты при a,b и c получаем систему уравнений:
⎧⎩⎨⎪⎪1=α+β1=α−β+2γ1=−2α+3γ
Решим эту систему уравнений методом Крамера:
Δ=∣∣∣∣11−21−10023∣∣∣∣=−3−4−3=−10,
Δ1=∣∣∣∣1111−10023∣∣∣∣=−3+2−3=−4,
Δ2=∣∣∣∣11−2111023∣∣∣∣=3−4−2−3=−6,
Δ3=∣∣∣∣11−21−10111∣∣∣∣=−1−2−2−1=−6,
α=Δ1Δ=−4−10=25;β=Δ2Δ=−6−10=35;γ=Δ3Δ=−6−10=35.
Таким образом, s=25p+35q+35r.
ответ: s=25p+35q+35r.
Пошаговое объяснение: