Число {\displaystyle \pi }\pi иррационально, то есть его значение не может быть точно выражено в виде дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m}m — целое число, а {\displaystyle n}n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа {\displaystyle \pi }\pi была впервые доказана Иоганном Ламбертом в 1761 году[2] путём разложения тангенса в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел {\displaystyle \pi }\pi и {\displaystyle \pi ^{2}}\pi ^{2}. Несколько доказательств подробно приведено в статье Доказательства иррациональности π.
{\displaystyle \pi }\pi — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Трансцендентность числа {\displaystyle \pi }\pi была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году[3]. Поскольку в евклидовой геометрии площадь круга и длина окружности являются функциями числа {\displaystyle \pi }\pi , то доказательство трансцендентности {\displaystyle \pi }\pi положило конец попыткам построить квадратуру круга, длившимся более 2,5 тысяч лет.
В 1934 году Гельфонд доказал[4] трансцендентность числа {\displaystyle e^{\pi }}e^{\pi }. В 1996 году Юрий Нестеренко доказал, что для любого натурального {\displaystyle n}n числа {\displaystyle \pi }\pi и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}} алгебраически независимы, откуда, в частности, следует[5][6] трансцендентность чисел {\displaystyle \pi +e^{\pi },\pi e^{\pi }}\pi +e^{\pi },\pi e^{\pi } и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}}.
{\displaystyle \pi }\pi является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли {\displaystyle 1/\pi }1/\pi к кольцу периодов.
В сечении имеем равнобедренный треугольник МРК. МК = МР. Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4. Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP: (по условию МД = a/2, а КД = РД = a/4) PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) = = √((4a²+a²-2a²)/16 = (a√3) / 4. Высота h треугольника РМК равна: h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8. Искомая площадь равна: S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.
Число {\displaystyle \pi }\pi иррационально, то есть его значение не может быть точно выражено в виде дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m}m — целое число, а {\displaystyle n}n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа {\displaystyle \pi }\pi была впервые доказана Иоганном Ламбертом в 1761 году[2] путём разложения тангенса в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел {\displaystyle \pi }\pi и {\displaystyle \pi ^{2}}\pi ^{2}. Несколько доказательств подробно приведено в статье Доказательства иррациональности π.
{\displaystyle \pi }\pi — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Трансцендентность числа {\displaystyle \pi }\pi была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году[3]. Поскольку в евклидовой геометрии площадь круга и длина окружности являются функциями числа {\displaystyle \pi }\pi , то доказательство трансцендентности {\displaystyle \pi }\pi положило конец попыткам построить квадратуру круга, длившимся более 2,5 тысяч лет.
В 1934 году Гельфонд доказал[4] трансцендентность числа {\displaystyle e^{\pi }}e^{\pi }. В 1996 году Юрий Нестеренко доказал, что для любого натурального {\displaystyle n}n числа {\displaystyle \pi }\pi и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}} алгебраически независимы, откуда, в частности, следует[5][6] трансцендентность чисел {\displaystyle \pi +e^{\pi },\pi e^{\pi }}\pi +e^{\pi },\pi e^{\pi } и {\displaystyle e^{\pi {\sqrt {ne^{\pi {\sqrt {n}}}.
{\displaystyle \pi }\pi является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли {\displaystyle 1/\pi }1/\pi к кольцу периодов.
Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4.
Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP:
(по условию МД = a/2, а КД = РД = a/4)
PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) =
= √((4a²+a²-2a²)/16 = (a√3) / 4.
Высота h треугольника РМК равна:
h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8.
Искомая площадь равна:
S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.