Укажите булеан множества Z={1,4,7,8}. 1)В(Z)={∅,{1},{7},{1,7},{4,8},{4},{4,7},{4,7,8},{8},{1,8},{1,7},{1,7,8},{1,4},{1,4,8},{1,4,7},{1,4,7,8}}
2)В(Z)={∅,{8},{5},{7,8},{1,8},{4},{4,7},{4,7,8},{1},{4,8},{1,7},{1,7,8},{1,4},{1,4,8},{1,4,7},{1,4,7,8}}
3)В(Z)={∅,{8},{7},{7,8},{4,8},{4},{4,7},{4,7,8},{1},{1,8},{1,7},{1,7,8},{1,4},{1,4,8},{1,4,7},{1,4,7,8}}
Количество всевозможных исходов: 6.
Подсчитаем количество благоприятных исходов и вероятности
a) Здесь подходит очко {6} - делится на 2 и на 3. Вариантов таких 1.
Искомая вероятность: P = 1/6
б) Очки, делящееся на 2 и не делящееся на 3: {2;4} - 2 варианта
Искомая вероятность: P = 2/6 = 1/3
в) Очки, делящееся на 3 и не делящееся на 2: {3} - 1 вариант
Искомая вероятность: P = 1/6
г) Очки, не делящееся ни на 2 ни на 3: {1; 5} - 2 варианта.
Искомая вероятность: P = 2/6 = 1/3
д) Очки, делящееся или на 2 или на 3: {2;3;4;6} - 4 варианта.
Искомая вероятность: P = 4/6 = 2/3
Если условие звучит именно так: "переливать из второго ведра в первое столько, сколько есть во втором ведре", то задача сводится к тому, находится ли во всех ведрах в сумме объем воды, меньший или равный объему одного ведра.
Так как ведер 10, то в одном ведре, объемом 100 л. можно собрать воду из 10 ведер даже в том случае, если в каждом из них будет по 10 литров воды:
10 · 10 = 100 (л.)
Однако, в имеющихся ведрах объем воды меньше или равен 10 литрам. Следовательно, собрать всю воду в одном ведре будет можно:
V = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 (л.) < 100 (л.)
ответ: собрать всю воду в одном ведре будет можно.
Усложним задачу и предположим, что из двух, взятых наугад, ведер можно переливать из второго в первое столько воды, сколько есть в первом ведре.
Исходя из условия, переливать можно из ведра с большим количеством воды в ведро с меньшим ее количеством. Иначе из ведра с 1 л нельзя перелить в любое другое ведро столько воды, сколько уже есть в другом.
Тогда последнее переливание должно быть равно по объему половине всей воды.
Объем всей воды в ведрах:
V = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 (л.)
Половина всего объема воды 27,5 л. Так как объемы воды во всех ведрах являются целыми числами, то собрать всю воду в одном ведре, соблюдая такое условие задачи, не удастся.