В сечении имеем равнобедренный треугольник МРК. МК = МР. Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4. Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP: (по условию МД = a/2, а КД = РД = a/4) PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) = = √((4a²+a²-2a²)/16 = (a√3) / 4. Высота h треугольника РМК равна: h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8. Искомая площадь равна: S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.
На данном уроке мы рассмотрим алгоритм решения третьего типа дифференциальных уравнений, который встречается практически в любой контрольной работе – линейные неоднородные дифференциальные уравнения первого порядка. Для краткости их часто называют просто линейными уравнениями. Материал не представляет особых сложностей, главное, уметь уверенно интегрировать и дифференцировать.
Начнем с систематизации и повторения.
На что в первую очередь следует посмотреть, когда вам предложено для решения любое дифференциальное уравнение первого порядка? В первую очередь необходимо проверить, а нельзя ли у данного диффура разделить переменные? Если переменные разделить можно (что, кстати, далеко не всегда очевидно), то нужно использовать алгоритмы и приемы решения, которые мы рассмотрели на первом уроке – Дифференциальные уравнения первого порядка. Советую посетить этот урок чайникам и всем читателям, которые чувствуют, что их знания и навыки в теме пока не очень хороши.
Если переменные в ДУ разделить не удалось, переходим к следующему этапу – проверяем, а не является ли уравнение однородным? Проверку обычно выполняют мысленно или на черновике, с самим алгоритмом проверки и образцами решения однородных уравнений можно ознакомиться на втором уроке – Однородные дифференциальные уравнения первого порядка.
Если переменные разделить не удалось, и уравнение однородным не является, то в 90% случаев перед вами как раз линейное неоднородное уравнение первого порядка.
Линейное уравнение первого порядка в стандартной записи имеет вид:
Что мы видим?
1) В линейное уравнение входит первая производная .
2) В линейное уравнение входит произведение , где – одинокая буковка «игрек» (функция), а – выражение, зависящее только от «икс».
3) И, наконец, в линейное уравнение входит выражение , тоже зависящее только от «икс». В частности, может быть константой.
Примечание: разумеется, в практических примерах эти три слагаемых не обязаны располагаться именно в таком порядке, их спокойно можно переносить из части в часть со сменой знака.
Перед тем, как перейти к практическим задачам, рассмотрим некоторые частные модификации линейного уравнения.
– Как уже отмечалось, выражение может быть некоторой константой (числом), в этом случае линейное уравнение принимает вид:
– Выражение тоже может быть некоторой константой , тогда линейное уравнение принимает вид: . В простейших случаях константа равна +1 или –1, соответственно, линейное уравнение записывается еще проще: или .
Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4.
Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP:
(по условию МД = a/2, а КД = РД = a/4)
PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) =
= √((4a²+a²-2a²)/16 = (a√3) / 4.
Высота h треугольника РМК равна:
h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8.
Искомая площадь равна:
S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.
На данном уроке мы рассмотрим алгоритм решения третьего типа дифференциальных уравнений, который встречается практически в любой контрольной работе – линейные неоднородные дифференциальные уравнения первого порядка. Для краткости их часто называют просто линейными уравнениями. Материал не представляет особых сложностей, главное, уметь уверенно интегрировать и дифференцировать.
Начнем с систематизации и повторения.
На что в первую очередь следует посмотреть, когда вам предложено для решения любое дифференциальное уравнение первого порядка? В первую очередь необходимо проверить, а нельзя ли у данного диффура разделить переменные? Если переменные разделить можно (что, кстати, далеко не всегда очевидно), то нужно использовать алгоритмы и приемы решения, которые мы рассмотрели на первом уроке – Дифференциальные уравнения первого порядка. Советую посетить этот урок чайникам и всем читателям, которые чувствуют, что их знания и навыки в теме пока не очень хороши.
Если переменные в ДУ разделить не удалось, переходим к следующему этапу – проверяем, а не является ли уравнение однородным? Проверку обычно выполняют мысленно или на черновике, с самим алгоритмом проверки и образцами решения однородных уравнений можно ознакомиться на втором уроке – Однородные дифференциальные уравнения первого порядка.
Если переменные разделить не удалось, и уравнение однородным не является, то в 90% случаев перед вами как раз линейное неоднородное уравнение первого порядка.
Линейное уравнение первого порядка в стандартной записи имеет вид:
Что мы видим?
1) В линейное уравнение входит первая производная .
2) В линейное уравнение входит произведение , где – одинокая буковка «игрек» (функция), а – выражение, зависящее только от «икс».
3) И, наконец, в линейное уравнение входит выражение , тоже зависящее только от «икс». В частности, может быть константой.
Примечание: разумеется, в практических примерах эти три слагаемых не обязаны располагаться именно в таком порядке, их спокойно можно переносить из части в часть со сменой знака.
Перед тем, как перейти к практическим задачам, рассмотрим некоторые частные модификации линейного уравнения.
– Как уже отмечалось, выражение может быть некоторой константой (числом), в этом случае линейное уравнение принимает вид:
– Выражение тоже может быть некоторой константой , тогда линейное уравнение принимает вид: . В простейших случаях константа равна +1 или –1, соответственно, линейное уравнение записывается еще проще: или .