Периметр - сумма длин всех сторон. У равнобедренного треугольника: две равные стороны и основание. Пусть а - сторона треугольника , b - основание. Р= a+a+b =30 см Следовательно может быть : 1) Основание больше на 3 см, чем сторона. Р= a+a+(a+3)= 30 см 3а+3=30 3а=30-3 3а=27 а=9 см - сторона треугольника 9+3=12 см - основание треугольника Р= 9+9+12 =30 см 2) Сторона больше на 3 см, чем основание. Р= (b+3)+(b+3) +b =30 3b+6= 30 3b=30-6 3b=24 b=8 см - основание 8+3= 11 см - сторона Р= 11+11+8=30 см. ответ: стороны равнобедренного треугольника могут быть: 1) 9 см, 9 см, 12 см 2) 11 см , 11 см, 8 см
Замена переменной sinx+cosx=t Возводим в квадрат sin²x+2sinxcosx+cos²x=t² Так как sin²x+cos²x=1, 2sinxcosx=sin2x, то 1+sin2x=t²⇒sin2x=t²-1 Уравнение примет вид: t=1-(t²-1) t²+t-2=0 D=1+8=9 t=(-1-3)/2=-2 или t=(-1+3)/2=1
sinx+cosx=-2 уравнение не имеет корней. Так как наименьшее значение синуса и косинуса равно -1, а это значение одновременно и синус и косинус принимать не могут.
sinx+cosx=1 Решаем методом введения вс угла. Делим уравнение на √2: (1/√2)sinx+(1/√2)cosx=1/√2. sin(x+(π/4))=1/√2. x+(π/4)=(π/4)+2πk, k ∈Z или x+(π/4)=(3π/4)+2πn, n∈Z; x=2πk, k∈Z или x=(π/2)+2πn, n∈Z. ответ.2πk; (π/2)+2πn; k,n∈Z.
У равнобедренного треугольника: две равные стороны и основание.
Пусть а - сторона треугольника , b - основание.
Р= a+a+b =30 см
Следовательно может быть :
1) Основание больше на 3 см, чем сторона.
Р= a+a+(a+3)= 30 см
3а+3=30
3а=30-3
3а=27
а=9 см - сторона треугольника
9+3=12 см - основание треугольника
Р= 9+9+12 =30 см
2) Сторона больше на 3 см, чем основание.
Р= (b+3)+(b+3) +b =30
3b+6= 30
3b=30-6
3b=24
b=8 см - основание
8+3= 11 см - сторона
Р= 11+11+8=30 см.
ответ: стороны равнобедренного треугольника могут быть:
1) 9 см, 9 см, 12 см
2) 11 см , 11 см, 8 см
sinx+cosx=t
Возводим в квадрат
sin²x+2sinxcosx+cos²x=t²
Так как sin²x+cos²x=1, 2sinxcosx=sin2x, то 1+sin2x=t²⇒sin2x=t²-1
Уравнение примет вид:
t=1-(t²-1)
t²+t-2=0
D=1+8=9
t=(-1-3)/2=-2 или t=(-1+3)/2=1
sinx+cosx=-2 уравнение не имеет корней. Так как наименьшее значение синуса и косинуса равно -1, а это значение одновременно и синус и косинус принимать не могут.
sinx+cosx=1
Решаем методом введения вс угла.
Делим уравнение на √2:
(1/√2)sinx+(1/√2)cosx=1/√2.
sin(x+(π/4))=1/√2.
x+(π/4)=(π/4)+2πk, k ∈Z или x+(π/4)=(3π/4)+2πn, n∈Z;
x=2πk, k∈Z или x=(π/2)+2πn, n∈Z.
ответ.2πk; (π/2)+2πn; k,n∈Z.