В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
XxNoNamexX
XxNoNamexX
12.06.2021 02:30 •  Математика

В каждой из шести колод карт выбирается наудачу по одной карте. Найти вероятность того, что 4 карты окажутся красной масти, а две – черной.

Показать ответ
Ответ:
загадка27
загадка27
08.01.2024 00:09
Для решения данной задачи нам необходимо знать следующую информацию:

- Сколько всего карт в колоде;
- Сколько карт в каждой масти;
- Какой процент карт в каждой масти являются красными, а какой черными.

После получения этой информации, мы сможем приступить к решению задачи.

1. Узнаем количество карт в колоде.
Предположим, что в колоде содержится 52 карты, как в обычной колоде игральных карт.

2. Узнаем количество карт каждой масти.
Предположим, что каждая масть содержит 13 карт.

3. Узнаем процент красных и черных карт в колоде.
В стандартной колоде 26 карт красной масти (пик и черви) и 26 карт черной масти (трефы и бубны).
Таким образом, доля красных карт составляет 26/52 = 1/2, а доля черных карт также равна 26/52 = 1/2.

4. Посчитаем вероятность того, что 4 карты окажутся красной масти, а 2 карты – черной.
Чтобы найти вероятность данного события, необходимо разделить количество различных комбинаций, удовлетворяющих условию, на общее количество комбинаций.

Количество комбинаций красных карт: C(26, 4) - количество сочетаний из 26 элементов по 4
Количество комбинаций черных карт: C(26, 2) - количество сочетаний из 26 элементов по 2
Общее количество комбинаций: C(52, 6) - количество сочетаний из 52 элементов по 6

Таким образом, вероятность данного события равна:
P = (C(26, 4) * C(26, 2)) / C(52, 6)

Теперь можем выполнить вычисления:

C(26, 4) = (26! / (4! * (26-4)!)) = (26 * 25 * 24 * 23) / (4 * 3 * 2 * 1) = 14,950
C(26, 2) = (26! / (2! * (26-2)!)) = (26 * 25) / (2 * 1) = 325
C(52, 6) = (52! / (6! * (52-6)!)) = (52 * 51 * 50 * 49 * 48 * 47) / (6 * 5 * 4 * 3 * 2 * 1) = 22,957,480

Заменим значения в формуле вероятности:

P = (14,950 * 325) / 22,957,480 = 482,875 / 22,957,480 ≈ 0.0210438

Таким образом, вероятность того, что 4 карты окажутся красной масти, а 2 карты – черной, составляет примерно 0.0210438 или около 2.1%.

Надеюсь, мое объяснение было понятным и помогло вам понять решение этой задачи. Если у вас остались какие-либо вопросы, пожалуйста, не стесняйтесь задавать их.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота