В магазине на одной полке лежало 147 цветных карандашей в шести маленьких и трёх больших коробках. А на другой полке — 113 цветных карандашей в четырёх маленьких и трёх больших коробках. Найди количество карандашей в одной маленькой коробке и одной большой коробке.
Сколько карандашей в 22-х маленьких коробках?
Сколько карандашей в одной маленькой коробке?
Сколько карандашей в шести маленьких коробках?
Сколько карандашей в трёх больших коробках?
Сколько карандашей в одной большой коробке?
Вычисляем, во сколько учёный должен выехать с вокзала:
(8-30) - (1-30) = 7-00. Т.е. учёный должен выехать с вокзала не позже этого времени.
Определяем по расписанию, какой поезд ближайший к 7-00, по приезду в Санкт-Петербург. Вполне очевидно, что первые два поезда приезжают до этого времени, другие два позже, их в расчёт не берём.
В условии вопрос: самый поздний по времени отправления. Первый(032AB)- отправляется в 22-50, второй(026А) в 23-00. Позже отправляется второй поезд, следовательно,
правильный ответ 2) 026А
Пошаговое объяснение:
Переместительное свойство умножения
От перестановки сомножителей местами произведение не меняется.
Следовательно, для любых чисел a и b верно равенство:
a · b = b · a
выражающее переместительное свойство умножения.
Примеры:
6 · 7 = 7 · 6 = 42
4 · 2 · 3 = 3 · 2 · 4 = 24
Обратите внимание, что данное свойство можно применять и к произведениям, в которых более двух множителей.
Сочетательное свойство умножения
Результат умножения трёх и более множителей не изменится, если какую-либо группу множителей заменить их произведением.
Следовательно, для любых чисел a, b и c верно равенство:
a · b · c = (a · b) · c = a · (b · c)
выражающее сочетательное свойство умножения.
Пример:
3 · 2 · 5 = 3 · (2 · 5) = 3 · 10 = 30
или
3 · 2 · 5 = (3 · 2) · 5 = 6 · 5 = 30
Сочетательное свойство используется для удобства и упрощения вычислений при умножении. Например:
25 · 15 · 4 = (25 · 4) · 15 = 100 · 15 = 1500
В данном случае можно было вычислить всё последовательно:
25 · 15 · 4 = (25 · 15) · 4 = 375 · 4 = 1500
но проще и легче сначала умножить 25 на 4 и получить 100, а уже потом умножить 100 на 15.
Распределительное свойство умножения
Сначала рассмотрим распределительное свойство умножения относительно сложения:
Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
Следовательно, для любых чисел a, b и m верно равенство:
m · (a + b) = m · a + m · b
выражающее распределительное свойство умножения.
Так как в данном случае число и сумма являются множителями, то поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:
Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на это число и полученные произведения сложить.
Следовательно, для любых чисел a, b и m верно равенство:
(a + b) · m = a · m + b · m
Теперь рассмотрим распределительное свойство умножения относительно вычитания:
Чтобы число умножить на разность чисел, можно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.
Следовательно, для любых чисел a, b и m верно равенство:
m · (a - b) = m · a - m · b
Так как в данном случае число и разность являются множителями, то поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:
Чтобы разность чисел умножить на число, можно уменьшаемое и вычитаемое отдельно умножить на это число и из первого полученного произведения вычесть второе.
Следовательно, для любых чисел a, b и m верно равенство:
(a - b) · m = a · m - b · m
Переход от умножения:
m · (a + b) и m · (a - b)
соответственно к сложению и вычитанию:
m · a + m · b и m · a - m · b
называется раскрытием скобок.
Переход от сложения и вычитания:
m · a + m · b и m · a - m · b
к умножению:
m · (a + b) и m · (a - b)