В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

В одном бидоне — x л, а в другом — y л молока.
На сколько литров молока в первом бидоне больше, чем во втором

Показать ответ
Ответ:
ninaemelyanova2
ninaemelyanova2
28.09.2021 13:26

Задание № 1:

На сколько нулей оканчивается значение произведения 20^50*50^20?

20^{50}*50^{20}=2^{50}*10^{50}*5^{20}*10^{20}=
2^{30}*2^{20}*5^{20}*10^{70}= \\ =2^{30}*10^{20}*10^{70}=2^{30}*10^{90}

2 в некой степени, очевидно, не заканчивается на 0. Значит, число нулей - 90.

ОТВЕТ: 90

 

Задание № 2:

Сколько существует двузначных чисел, которые после перестановки цифр увеличиваются на 75%?

РЕШЕНИЕ: Пусть было число АВ=10а+b. После перестановки получили число BA=10b+a. По условию:

10b+a=1.75(10a+b) \\ 10b+a=17.5a+1.75b \\ 8.25b=16.5a
\\ 8.25b=16.5a \\ b=2a

Значит, если в числе цифра десятков в 2 раза больше цифры единиц, то оно попадает под наше условие.

Это числа: 21, 42, 63, 84

ОТВЕТ: 4 числа

 

Задание № 3:

Решите уравнение: |||x|−5|−5|=5. Назовите наибольший корень уравнения.

|||x|-5|-5|=5 \\ \left[\begin{array}{l} ||x|-5|-5=5 \\
||x|-5|-5=-5\end{array} \\ \left[\begin{array}{l} ||x|-5|=10 \\
||x|-5|=0\end{array} \\ \left[\begin{array}{l} |x|-5=10 \\ |x|-5=-10 \\
|x|-5=0\end{array}

\left[\begin{array}{l} |x|=15 \\ |x|=-5 \\
|x|=5\end{array} \left[\begin{array}{l} x=\pm15 \\ x - net \\ x=\pm5\end{array}
x_{max}=15

ОТВЕТ: 15

 

Задание № 4:

В коробке лежат чёрные, белые и красные шарики. Чёрных больше, чем 7, а белых меньше, чем 7. Вместе чёрных и красных в 2 раза больше, чем белых, а белых и красных ровно столько, сколько чёрных. Сколько всего шариков?

РЕШЕНИЕ: Пусть черных с, белых b, красных k.

c\ \textgreater \ 7 \\ b\ \textless \ 7 \\ c+k=2b \\
b+k=c

Складываем уравнения:

c+k+b+k=2b+c \\ 2k=b

Подставляем во второе:

2k+k=c \\ 3k=c

\left \{ {{3k\
\textgreater \ 7 } \atop {2k\ \textless \ 7}} \right. \\ \left \{ {{k\
\textgreater \ 7/3 } \atop {k\ \textless \ 7/2}} \right.

Единственное возможное целое k - число 3.

Тогда k+c+b=k+3k+2k=6k=6*3=18 шариков

ОТВЕТ: 18 шариков

 

 

 

 

 

 

 

 

 

 

 

Задание № 5:

Стоя неподвижно на ступени эскалатора в метро Ваня поднимается наверх за одну минуту. Взбегая по ступеням неподвижного эскалатора, он добирается до верха за 40 секунд. За какое время Ваня поднимается наверх, если начинает взбегать по ступеням эскалатора, движущегося вверх? Дайте ответ в секундах.

РЕШЕНИЕ: Пусть длина расстояния L.

Если Ваня стоит неподвижно на ступени эскалатора, то скорость движения равна L/60. (Считаем в секундах, в минуте 60 секунд).

Если Ваня взбегает по ступеням неподвижного эскалатора, то скорость движения равна L/40.

Когда Ваня бежит по ступеням движущегося эскалатора, то скорости Вани и эскалатора суммируются: L/60+L/40. Тогда время определяется отношением длины к скорости:

\frac{L}{ \frac{L}{60} + \frac{L}{40} } = \frac{1}{
\frac{1}{60} + \frac{1}{40} } = \frac{1}{ \frac{2}{120} + \frac{3}{120} }
=\frac{1}{ \frac{5}{120} } =\frac{120}{5}=24

ОТВЕТ: 24 секунды

 

Задание № 6:

Встретились три охотника и сварили кашу. Первый дал две кружки крупы, второй — три кружки крупы, а у третьего крупы не было. Но зато он дал охотникам 30 рублей в качестве платы за кашу. Все кашу ели поровну. Сколько рублей достанется второму охотнику, если их разделить по справедливости?

РЕШЕНИЕ: Так как 3 порции каши готовились из 5 кружек крупы, то одна порция составляет (5/3) кружки.

Первый дал две кружки крупы, значит, он имел право получить две кружки каши. Однако он взял только (5/3) кружки. 2-5/3=1/3 кружки – первый передал третьему

Второй дал три кружки крупы, значит, он имел право получить три кружки каши. Однако он взял только (5/3) кружки. 3-5/3=4/3 кружки – второй передал третьему

Видно, что второй передал третьему в 4 раза больше каши, чем первый. Значит и денег он получит в 4 раза больше. Деньги делим в отношении 1:4, то есть всего 5 частей. 30/5*4=24 рубля

ОТВЕТ: 24 рубля

 

Задание № 7:

Отрезок 50 см разделён на четыре неравных отрезка. Расстояние между серединами средних отрезков равно 10 см. Найдите расстояние между серединами крайних отрезков. Дайте ответ в сантиметрах.

РЕШЕНИЕ: Расстояние между серединами крайних отрезков представляет собой полусумму длин крайних отрезков и сумму длин средних отрезков.

Так как расстояние между серединами средних отрезков равно 10 см, то сумма их длин равна 2*10=20 см.

Оставшаяся длина – это сумма длин крайних отрезков: 50-20=30 см. Их полусумма тогда равна 30/2=15 см

20+15=35 см

ОТВЕТ: 35 см

0,0(0 оценок)
Ответ:
shorgk
shorgk
28.09.2021 13:26

Задание № 1:

Найдите последнюю ненулевую цифру значения произведения 40^50*50^40?

40^{50}*50^{40}=4^{50}*10^{50}*5^{40}*10^{40}=
(2^2)^{50}*5^{40}*10^{50}*10^{40}= \\ =2^{100}*5^{40}*10^{90}
=2^{60}*2^{40}*5^{40}*10^{90} = \\ =2^{60}*10^{40}*10^{90}=2^{60}*10^{130}

10^130 нас не интересует. Попробуем повозводить 2 в степень:

2^1=2, 2^2=4, 2^3=8, 2^4=16, 2^5=32

Пятая степень, как и первая, оканчивается на 2. Образуется своего рода цикл.

Чтобы узнать последнюю цифру степени N, нужно N разделить на 4. Остаток от деления соответствует степени, последняя цифра которой совпадает с последней цифрой степени N. Остаток 0 соответствует 4-ой степени.

60/4=15, остаток 0 – 4 степень оканчивается на 6, значит и 60 степень оканчивается на 6

ОТВЕТ: 6

 

Задание № 2:

Задумано простое трёхзначное число, все цифры которого различны. На какую цифру оно оканчивается, если его последняя цифра равна сумме первых двух?

РЕШЕНИЕ: Всего возможно 10 вариантов: 0123456789.

Четные цифры убираем, иначе число четное. Остаются варианты 13579.

Цифру 5 убираем, иначе число делится на 5. Остаются варианты 1379.

1 убираем, так как 1 нельзя представить в виде суммы двух других цифр. Остаются варианты 379.

Если последняя цифра 3 или 9, то число будет делиться на 3, так как и сумма первых двух цифр в этом случае тоже делится на 3. Число не простое. Тоже не подходит. Остается вариант 7.

ОТВЕТ: 7

 

Задание № 3:

Сколько корней имеет уравнение: |x|=|x−1|+x−3?

|x|=|x-1|+x-3
\\ \left[\begin{array}{l} -x=-x+1+x-3, x\ \textless \ 0 \\ x=-x+1+x-3,0 \leq x
\leq 1 \\ x=x-1+x-3,x\ \textgreater \ 1 \end{array}
\left[\begin{array}{l} 0=1+x-3, x\
\textless \ 0 \\ x=+1-3,0 \leq x \leq 1 \\ 0=x-1-3,x\ \textgreater \ 1
\end{array} \\ \left[\begin{array}{l} x=2, x\ \textless \ 0 \\ x=-2,0 \leq x
\leq 1 \\ x=4,x\ \textgreater \ 1 \end{array}

Условию раскрытия модуля соответствует только третья строчка.

ОТВЕТ: 1

 

Задание № 4:

Решите уравнение: k*k*x=k(x+5)−5. При каких значениях параметра k уравнение не имеет решений?

k*k*x=k(x+5)-5
\\ k^2x=kx+5k-5 \\ k(k-1)x=5(k-1)
Если k=1, то уравнение 0х=0 имеет бесконечное множество решений
Иначе, делим на (k-1):
kx=5
Если k=0, то уравнение 0х=5 не имеет корней, иначе корень 5/k

ОТВЕТ: 0

 

 

 

 

 

 

Задание № 5:

Стоя неподвижно на ступени эскалатора в метро Ваня поднимается наверх за одну минуту. Взбегая по ступеням неподвижного эскалатора, он добирается до верха за 40 секунд. За какое время Ваня поднимается наверх, если начинает взбегать по ступеням эскалатора, движущегося вниз? Дайте ответ в секундах.

РЕШЕНИЕ: Пусть длина расстояния L.

Если Ваня взбегает по ступеням неподвижного эскалатора, то скорость движения равна L/40. (Считаем в секундах, в минуте 60 секунд).

Если Ваня стоит неподвижно на ступени эскалатора, то скорость движения равна L/60.

Когда Ваня бежит по ступеням движущегося вниз эскалатора, то скорости Вани и эскалатора вычитаются: L/40-L/60. Тогда время определяется отношением длины к скорости:

\frac{L}{ \frac{L}{40} - \frac{L}{60} } = \frac{1}{
\frac{1}{40} - \frac{1}{60} } = \frac{1}{ \frac{3}{120} - \frac{2}{120} }
=\frac{1}{ \frac{1}{120} } =\frac{120}{1}=120

ОТВЕТ: 120 секунд

 

Задание № 6:

На часах ровно 9. Через сколько минут стрелки часов часовая и минутная совпадут в первый раз? Дайте ответ в минутах с точностью до целых.

РЕШЕНИЕ: рассматриваем минутный циферблат:

координата часовой: 45+t/12 // 9 часов соответствует 45 минутам на циферблате, скорость часовой в 12 раз меньше скорости минутной

координата минутной: 0+t

t - время

координаты должны совпасть

45+t/12=t

45=11t/12

11t=540

t=49,09=49

ОТВЕТ: через 49 минут

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота