В тетраэдре ABCD медианы граней ABD, BCD и ABC пересекаются соответственно в точках M, N и O. На отрезке DO взята точка P так, что DP = λ*DO . При каком λ сечение тетраэдра плоскостью MNP будет параллелограммом?
. Изобразите тетраэдр KLMN. а) Постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину А ребра MN. б) Докажите, что плоскость, проходящая через середины Е, О и F отрезков LM, МА и МК, параллельна плоскости LKA. Найдите площадь треугольника EOF, если площадь треугольника LKA равна 24 см2.
а) Проведем
- искомое сечение.
б) В ΔAMK: OF - средняя линия, OF || AK; в ΔMLK: EF - средняя линия, EF || KL.
По теореме п. 10
Площади подобных треугольников
как углы с соответственно параллельными и одинаково направленными сторонами;
поэтому
относятся как квадраты, значит, соответствующих линейных размеров.
1. При вычисления второй стороны прямоугольника видим, что в сечении получается удвоенный "египетский" треугольник с катетами 6 и 8 и гипотенузой 10 см. Радиус цилиндра R=8., высота = 6 см. Объем цилиндра V = π*R²*H = π*64*6 = 384*π ~ 1206 см³ ОТВЕТ: 384π см³ 2. Для вычисления высоты призмы сначала рассчитаем площадь основания - равностороннего треугольника со стороной а= 2 м Угол между сторонами α= 60 град. Используем формулу S = 1/2*a*b*sin(α) = 2*√3/2 =√3 м² Высота призмы H = S/a = √3/2 м² Объем призмы V= S*H = √3*√3/2 = 3/2 = 1 1/2 м³ ОТВЕТ: 1 1/2 м³
. Изобразите тетраэдр KLMN. а) Постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину А ребра MN. б) Докажите, что плоскость, проходящая через середины Е, О и F отрезков LM, МА и МК, параллельна плоскости LKA. Найдите площадь треугольника EOF, если площадь треугольника LKA равна 24 см2.
а) Проведем
- искомое сечение.
б) В ΔAMK: OF - средняя линия, OF || AK; в ΔMLK: EF - средняя линия, EF || KL.
По теореме п. 10
Площади подобных треугольников
как углы с соответственно параллельными и одинаково направленными сторонами;
поэтому
относятся как квадраты, значит, соответствующих линейных размеров.
Радиус цилиндра R=8., высота = 6 см.
Объем цилиндра V = π*R²*H = π*64*6 = 384*π ~ 1206 см³
ОТВЕТ: 384π см³
2. Для вычисления высоты призмы сначала рассчитаем площадь основания - равностороннего треугольника со стороной а= 2 м
Угол между сторонами α= 60 град.
Используем формулу
S = 1/2*a*b*sin(α) = 2*√3/2 =√3 м²
Высота призмы H = S/a = √3/2 м²
Объем призмы V= S*H = √3*√3/2 = 3/2 = 1 1/2 м³
ОТВЕТ: 1 1/2 м³