Вариант 14.
1. дан предикат
q(x) : 2 — 4х + 3 = 0
установить значение истинности следующего высказывания
эx q(x)
2.
на множестве
m= {1, 2, 3, , 20} заданы предикаты
а(x): x не делится на 5;
b(x) : x- четное число
c(x): x — число простое;
d(x): х кратно 3.
найдите множества истинности предикатов
c(x)\/ d(x)
Признак делимости на 3 : Если сумма цифр данного числа делится без остатка на 3 , значит данное число делится на 3.
44 . 4+ 4 = 8 не делится на 3
444 . 4 + 4 + 4 = 12 делится на 3 без остатка
4444. 4 + 4 + 4 + 4 = 16 не делится на 3.
444444. 4 + 4 + 4 + 4 + 4 + 4 = 24 делится на 3 без остатка
555. 5 + 5 + 5 = 15 делится на 3 без остатка
5555. 5 + 5 + 5 + 5 = 20 не делится на 3
ответ 444 ;444444 ; 555.
Признак делимости на 9 аналогичен признаку делимости на 3 , только сумма цифр должна делиться без остатка на 9.
81. 8 + 1 = 9 делится на 9
818, 8 + 1 + 8 = 17 не делится на 9
8181. 8 + 1 + 8 + 1 = 18 делится на 9
81818. 8 + 1 + 8 + 1 + 8 = 26 не делится на 9
818181. (8 + 1) + (8 + 1) + (8 + 1) = 9 * 3 делится на 9 , так как 1 из множителей 9
ответ : 81 ; 8181 ; 818181 .
Если вы что-то не поняли или нашли ошибку , то напишите автору .
Дополнение : Если вам дано огромное число
Например : 98746282939 и нужно определить делится на 3 или на 9
Найдём сумму цифр = 67
Однако нам не очень хочется считать столбиком 67 / 3
Поэтому посчитаем сумму цифр 67
= 13
13 уже точно не делится на 3 . В этом примере мы увидели , как можно несколько раз применять один и тот же признак !