Вариант № 2 Тест. 1. Укажите верное значение выражения : A. ; B. ; C. ; D. . 2. Значение выражения при равно: A. ; B. ; C. ; D. . 3. Выражение может быть записано в виде: A. ; B. ; C. ; D. . 4. Производная произведения находится по правилу: A. ; B. ; C. ; D. . 5. Производная функции равна … A. ; B. ; C. ; D. . 6. Производная функции равна … A. B. C. D. 7. Синусом числа называется… A. Абсцисса точки, соответствующей числу на числовой окружности; B. Ордината точки, соответствующей числу на числовой окружности; C. Точка на числовой окружности; D. Начало координат. 8. Значение выражения равно … A. ; B. ; C. D. 9. Корень уравнения принадлежит интервалу: A. ; B. ; C. D. 10. Корень уравнения равен … A. ; B. ; C. ; D. . Решение задач. 1. Найдите производные функций: а) , б) , в) . 2. Найдите наименьшее и наибольшее значение функции на отрезке: . 3. Решить уравнения: a) , b) , c) , d) . 4. Решите неравенства: a) , b) . 5. Вычислить определенный интеграл: . 6. Зная апофему правильной четырехугольной пирамиды, равную 5 и высоту , найти площадь боковой поверхности.
ответ: нет . Более того , невозможно получить произвольное натуральное число N.
Пошаговое объяснение:
Найдем среди чисел от 2 жо 1994 число содерщащее в делителях максимальную степень двойки.
Такое число единственно и равно : 2^10=1024
Предположим , что произвольная комбинация + ,- из слагаемых :
1/2 ;1/3 ; 1/4 1/994 равна натуральному числу N.
Тогда умножим обе части равенства на 2^10.
Во всех дробях вида : 2^10/k сократяться со знаменателем все степени числа 2, что содержит число k. (То есть знаменатели всех дробей станут нечетными) . Если число k отлично от 2^10 , то числители этих дробей будут четны , тк все эти числа содержат в себе меньше чем 2^10.
Но если число k=2^10=1024 , то это единственное число которое после сокращения имеет нечетный числитель равный 1. Другими словами это будет просто число 1 (2^10/2^10)=1.
Всего от 2 до 1994 : 1993 числа , одно из которых равно единице , а остальные имеют четные числители и нечетные знаменатели.
Если перенести единицу в правую часть равенства , то получим cправа:
2^10*N +-1 - абсолютно очевидно , что число справа является нечетным. (+- в зависимости от того какой знак стоит перед ним)
А слева у нас остается 1992 числа с четными числителями и нечетными знаменателями. Если привести каждую из данных дробей к общему нечетному знаменателю ( тк общий знаменатель нечетных чисел число нечетное) , то получим дробь с нечетным знаменателем и числителем состоящим сумм и разностей четных чисел. ( Cумма или разность в любых комбинациях произвольного числа четных чисел число четное)
Таким образом получаем :
A/B= 2^10 *N+-1=C
A-четное число
B-нечетное число
2^10*N +-1=C -нечетное число
Но тогда :
A=B*C -то есть мы получили, что произведение двух нечетных чисел равна четному числу. Мы пришли к противоречию.
Нельзя расставить знаки «+». «-» между дробями 1/2,1/3,1/4...1/1994 так , чтобы в результате получилось натуральное число. Cоответственно число 4 не является исключением из правил и его так же получить невозможно.
П р и м е р .
Одно из преимуществ десятичных дробей – они легко приводятся к виду обыкновенных: число после десятичной точки (в нашем случае 5047) – это числитель; знаменатель же равен n–ой степени 10, где n - количество десятичных знаков (в нашем случае n = 4):
Если десятичная дробь не содержит целой части, то перед десятичной точкой ставится ноль:
Свойства десятичных дробей.
1. Десятичная дробь не меняется, если справа добавить нули:
13.6 =13.6000.
2. Десятичная дробь не меняется, если удалить нули, расположенные
в конце десятичной дроби:
0.00123000 = 0.00123 .
Внимание! Нельзя удалять нули, расположенные не в конце десятичной дроби!
3. Десятичная дробь возрастает в 10, 100, 1000 и т. д. раз, если перенести
десятичную точку на одну, две, три и т. д. позиций вправо:
3.675 ---> 367.5 (дробь возросла в 100 раз) .
4.Десятичная дробь уменьшается в 10, 100, 1000 и т. д. раз, если перенести
десятичную точку на одну, две, три и т. д. позиций влево:
1536.78 ---> 1.53678 (дробь уменьшилась в 1000 раз) .
Эти свойства позволяют быстро умножать и делить десятичные дроби на 10, 100, 1000 и т. д.
Периодическая десятичная дробь содержит бесконечно повторяющуюся группу цифр, называемую периодом. Период записывается в скобках. Например, 0.12345123451234512345… = 0.(12345).
П р и м е р . Если разделить 47 на 11, то получим 4.27272727… = 4.(27).