Вася и Петя, посорившись ,разбежались в разные стороны с одинаковыми скоростями.Через пять минут Вася спохватился ,повернул назад и ,увеличив скорость побежал к Пете.Во сколько раз увеличил Вася скорость ,если он догнал Петю через 5 минут?
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Если функция дифференцируема на интервале и является возрастающей, строго возрастающей, убывающей или строго убывающей, то такая функция называется монотонной на данном интервале.
возрастание и убывание функции
– если на интервале [a; b] производная f' >0, то функция возрастает на данном интервале;
– если на интервале [a; b] производная f' < 0, то функция убывает на данном интервале.
у нас
функция убывает на промежутках [-5; -4] ∪ [-2; 1]
функция возрастает на промежутках [-4; -2] ∪ [1; 5]
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Пошаговое объяснение:
Вот там написал
Пошаговое объяснение:
Если функция дифференцируема на интервале и является возрастающей, строго возрастающей, убывающей или строго убывающей, то такая функция называется монотонной на данном интервале.
возрастание и убывание функции
– если на интервале [a; b] производная f' >0, то функция возрастает на данном интервале;
– если на интервале [a; b] производная f' < 0, то функция убывает на данном интервале.
у нас
функция убывает на промежутках [-5; -4] ∪ [-2; 1]
функция возрастает на промежутках [-4; -2] ∪ [1; 5]