Искомое двузначное число представим в виде ( и - однозначные и неотрицательные, при этом ).
1). Пусть зачеркнули цифру из разряда десятков. Тогда из числа получилось число . Нам нужно выполнение следующего равенства:
Единственные однозначные натуральные решения: и .
Значит, число ⇒ .
2). Пусть зачеркнули цифру из разряда единиц. ⇒ . Уравнение составляется и решается по аналогии:
Откуда и .
Имеем второе подходящее решение: ⇒ .
Значит, двузначное число - это или , или .
Решение 2:
Можно было и кратким подбором решить, умножая все цифры на (умножаемая цифра - та, которая могла остаться после вычеркивания), пока не станут появляться трехзначные числа.
Нам нужно, чтобы в получившемся числе присутствовало умножаемое число (иначе как оно смогло бы потом остаться?):
1) зачеркнули 7 из числа 17;
2) зачеркнули 8 из числа 85.
Решение 1:Искомое двузначное число представим в виде ( и - однозначные и неотрицательные, при этом ).
1). Пусть зачеркнули цифру из разряда десятков. Тогда из числа получилось число . Нам нужно выполнение следующего равенства:
Единственные однозначные натуральные решения: и .
Значит, число ⇒ .
2). Пусть зачеркнули цифру из разряда единиц. ⇒ . Уравнение составляется и решается по аналогии:
Откуда и .
Имеем второе подходящее решение: ⇒ .
Значит, двузначное число - это или , или .
Решение 2:Можно было и кратким подбором решить, умножая все цифры на (умножаемая цифра - та, которая могла остаться после вычеркивания), пока не станут появляться трехзначные числа.
Нам нужно, чтобы в получившемся числе присутствовало умножаемое число (иначе как оно смогло бы потом остаться?):
- не подходит, не двузначное.
- подходит, вычеркивали из числа .
- не подходит.
- не подходит.
- не подходит.
- подходит, вычеркивали из числа .
- не подходит, начинаются трехзначные числа.
Получаем те же самые два решения: и .
Задача решена!