S = a • b - площадь прямоугольника, где a и b - его стороны. Надаивайте сочетания натуральных a и b, произведения которых равны 12. Это: 1 • 12, значит, a = 1, b = 12 2 • 6, значит, a = 2, b = 6 3 • 4, значит, a = 3, b = 4 4 • 3, значит, a = 4, b = 3 6 • 2, значит, a = 6, b = 2 12 • 1, значит, a = 12, b = 1
Но поскольку для прямоугольника безразлично «лежит ли он горизонтально» или «стоит вертикально», то можно рассматривать только варианты: 1 • 12, значит, a = 1, b = 12 2 • 6, значит, a = 2, b = 6 3 • 4, значит, a = 3, b = 4 так как остальные варианты повторяются.
Итак, всего вариантов решения 3: 1 • 12, значит, a = 1, b = 12 2 • 6, значит, a = 2, b = 6 3 • 4, значит, a = 3, b = 4
Но если все-таки есть различие в положении прямоугольника, то вариантов решения 6
Пошаговое объяснение:
* * * * * * * * * * * * * * * * * * * * * * *
Используя теорему Безу, найдите остаток от деления многочлена x³+2x² -13x+10 на x - 2.
ответ: 0.
Объяснение: P(x) =(x - a)*Q(x) +R ⇒ R = P(a)
x³+2x² - 13x+10 = (x - 2) * (Ax²+Bx +C) + R ; R_остаток
x =2. 2³ +2*2² -13*2 +10 = (2-2) * (Ax²+Bx +C) + R ⇒ R =0
* * * * * * * * * * * * * * * * * * * * * * * *
x=2 является корнем многочлена P(x) = x³+2x² -13x+10
т.к. 2³ +2*2² -13*2 +10 =8+ 8 - 26 +10 = 0
* * * ! 2 является делителем свободного члена_10 * * *
следовательно x³+2x² -13x+10 делится на (x-2) ,без остатка
* * * остаток равен нулю * * *
x³+2x²-13x+10 = (x -2) (x² +4x - 5)
* * * x³+2x²-13x+10 =x³ - 2x²+4x² -8x -5x +10 =
x²(x-2) +4x(x -2) -5(x-2) = (x-2) (x²+4x -5) = (x-2)(x-1)(x+5)
* * * Делить можно а также столбиком или по схеме Горнера * * *
корни { -5 ; 1 ; 2} являются делителями свободного члена
Надаивайте сочетания натуральных a и b, произведения которых равны 12.
Это:
1 • 12, значит, a = 1, b = 12
2 • 6, значит, a = 2, b = 6
3 • 4, значит, a = 3, b = 4
4 • 3, значит, a = 4, b = 3
6 • 2, значит, a = 6, b = 2
12 • 1, значит, a = 12, b = 1
Но поскольку для прямоугольника безразлично «лежит ли он горизонтально» или «стоит вертикально», то можно рассматривать только варианты:
1 • 12, значит, a = 1, b = 12
2 • 6, значит, a = 2, b = 6
3 • 4, значит, a = 3, b = 4
так как остальные варианты повторяются.
Итак, всего вариантов решения 3:
1 • 12, значит, a = 1, b = 12
2 • 6, значит, a = 2, b = 6
3 • 4, значит, a = 3, b = 4
Но если все-таки есть различие в положении прямоугольника, то вариантов решения 6