Двухколесные -? шт. Трехколесные -? шт. 13 рулей - 28 колес Пусть двухколесных велосипедов - х штук, у них 2*х - колес, 1*х -рулей. Тогда трехколесных велосипедов - у штук , у них 3*у -колес, 1*у -рулей. Зная что рулей всего 13, а колес 28 , составим систему уравнений: 2х+3у=28 х+у= 13 *3 у=13-х
1) 2^8+4^5-8^2=2^8+(2^2)^5-(2^3)^2=2^8+2^10-2^6=2^6*(2^2+2^4-1)=2^6*(4+16-1)=2^6*19=2^5*(2*19)=2^5*38 это выражение делится на 38
(2^5*38)/38=2^5=32 что требовалось доказать
2) 3^11+9^6+27^3=3^11+(3^2)^6+(3^3)^3=3^11+3^12+3^9=3^9*(3^2+3^3+1)=3^9*(9+27+1)=3^9*37=3^8*(3*37)=3^8*111 это выражение делится на 111
(3^8*111)/111=3^8 что требовалось доказать
3) a=9^7+9^6+9^5=(3^2)^7+(3^2)^6+(3^2)^5=3^14+3^12+3^10=3^10*(3^4+3^2+1)=3^10*(81+9+1)=3^10*91.
b=3^10-3^9+3^8=3^8*(3^2-3+1)=3^8*(9-3+1)=3^8*7
(3^10*91)/(3^8*7)=3^2*91/7=9*13=117 что и требовалось доказать а делится на bТрехколесные -? шт.
13 рулей - 28 колес
Пусть двухколесных велосипедов - х штук, у них 2*х - колес, 1*х -рулей.
Тогда трехколесных велосипедов - у штук , у них 3*у -колес, 1*у -рулей.
Зная что рулей всего 13, а колес 28 , составим систему уравнений:
2х+3у=28
х+у= 13 *3 у=13-х
2х+3у=28
3х+ 3у =39
(3х+3у )- (2х+3у)= 39-28
3х+3у - 2х-3у = 11
х=11 (шт) - двухколесных велосипедов
у= 13-х
у=13-11=2 (шт) трехколесных велосипедов.
ответ: в детском мире продавали 2 трехколесных велосипеда.