Впрямоугольном параллелепипеде стороны основания 3м и 4м, а диагональ наклонена к плоскости основания под углом 60градусов найдите: а)его высоту б)площадь боковой поверхности
Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x). Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x). Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что ∫d(U(x)V(x))=U(x)V(x)+C, получаем соотношение
Интегрирование по частям
называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.
Решение онлайн
Видеоинструкция
С данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.
infinity
∫
pi
1/2*(x+1)*exp(x)
? dx
ДалееТакже рекомендуется изучить сервис вычисление интегралов онлайн
Применение метода интегрирования по частям
В связи с особенностями нахождения определенных величин, формулу интегрирования по частям очень часто используют в следующих задачах:
Математическое ожидание непрерывной случайной величины. Формула для нахождения математического ожидания и дисперсии непрерывной случайной величины включает в себя два сомножителя: функцию полинома от x и плотность распределения f(x).
Разложение в ряд Фурье. При разложении необходимо определять коэффициенты, которые находятся интегрированием от произведения функции f(x) и тригонометрической функции cos(x) или sin(x).
Типовые разложения по частям
Вид интеграла Разложения на части
∫Pn(x)cos(ax)dx, ∫Pn(x)sin(ax)dx, ∫Pn(x)eaxdx, где Pn(x) - некоторый полином (многочлен) степени n U(x)=Pn(x), dV(x)=cos(ax)dx
∫ln(P(x))dx U=ln(P(x)); dV=dx
∫arcsin(ax)dx U=arcsin(ax); dV=dx
U=ln(x); dV=dx/x
При использовании формулы интегрирования по частям нужно удачно выбрать U и dV, чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=ex, dV=xdx. Тогда dU=exdx, и Вряд ли интеграл ∫x2exdx можно считать проще исходного.
Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла ∫x2sin(x)dx.
Интегралы ∫eaxcos(bx)dx и ∫eaxsin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.
ПРИМЕР №1. Вычислить ∫xexdx.
Положим U=x, dV=exdx. Тогда dU=dx, V=ex. Поэтому ∫xexdx=xex-∫exdx=xex-ex+C.
ПРИМЕР №2. Вычислить ∫xcos(x)dx.
Полагаем U=x, dV=cos(x)dx. Тогда dU=dx, V=sin(x) и ∫xcos(x)dx=xsin(x) - ∫sin(x)dx = xsin(x)+cos(x)+C
Пусть х(ч)-время затраченное самолетом на путь из города А в город В со скоростью 180 км/ч. По условию, если он увеличит скорость на 20км/ч (т.е. его скорость будет 180+20=200км/ч), то он выполнит рейс на 30мин. быстрее (30 мин=0,5ч), быстрее значит затратит времени меньше на 0,5ч., т.е при скорости 200км\ч он затратит время равное х-0,5(ч). Путь пройденный самолетом со скоростью 180Км/ч равен 180*х=180х(км) и этот путь равен пути который пройдет самолет со скоростью 200км/ч, этот пкть равен 200(х-0,5)км. Составим и решим уравнение:
180х=200(х-0,5),
180х=200х-100,
20х=100,
х=100:20,
х=5
5(ч)-время затрачееное самолетом на путь из А в В со скорость 180Км\ч.
Пошаговое объяснение:
Интегрирование по частям
Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x). Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x). Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что ∫d(U(x)V(x))=U(x)V(x)+C, получаем соотношение
Интегрирование по частям
называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.
Решение онлайн
Видеоинструкция
С данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.
infinity
∫
pi
1/2*(x+1)*exp(x)
? dx
ДалееТакже рекомендуется изучить сервис вычисление интегралов онлайн
Применение метода интегрирования по частям
В связи с особенностями нахождения определенных величин, формулу интегрирования по частям очень часто используют в следующих задачах:
Математическое ожидание непрерывной случайной величины. Формула для нахождения математического ожидания и дисперсии непрерывной случайной величины включает в себя два сомножителя: функцию полинома от x и плотность распределения f(x).
Разложение в ряд Фурье. При разложении необходимо определять коэффициенты, которые находятся интегрированием от произведения функции f(x) и тригонометрической функции cos(x) или sin(x).
Типовые разложения по частям
Вид интеграла Разложения на части
∫Pn(x)cos(ax)dx, ∫Pn(x)sin(ax)dx, ∫Pn(x)eaxdx, где Pn(x) - некоторый полином (многочлен) степени n U(x)=Pn(x), dV(x)=cos(ax)dx
∫ln(P(x))dx U=ln(P(x)); dV=dx
∫arcsin(ax)dx U=arcsin(ax); dV=dx
U=ln(x); dV=dx/x
При использовании формулы интегрирования по частям нужно удачно выбрать U и dV, чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=ex, dV=xdx. Тогда dU=exdx, и Вряд ли интеграл ∫x2exdx можно считать проще исходного.
Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла ∫x2sin(x)dx.
Интегралы ∫eaxcos(bx)dx и ∫eaxsin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.
ПРИМЕР №1. Вычислить ∫xexdx.
Положим U=x, dV=exdx. Тогда dU=dx, V=ex. Поэтому ∫xexdx=xex-∫exdx=xex-ex+C.
ПРИМЕР №2. Вычислить ∫xcos(x)dx.
Полагаем U=x, dV=cos(x)dx. Тогда dU=dx, V=sin(x) и ∫xcos(x)dx=xsin(x) - ∫sin(x)dx = xsin(x)+cos(x)+C
ПРИМЕР №3. ∫(3x+4)cos(x)dx
Пусть х(ч)-время затраченное самолетом на путь из города А в город В со скоростью 180 км/ч. По условию, если он увеличит скорость на 20км/ч (т.е. его скорость будет 180+20=200км/ч), то он выполнит рейс на 30мин. быстрее (30 мин=0,5ч), быстрее значит затратит времени меньше на 0,5ч., т.е при скорости 200км\ч он затратит время равное х-0,5(ч). Путь пройденный самолетом со скоростью 180Км/ч равен 180*х=180х(км) и этот путь равен пути который пройдет самолет со скоростью 200км/ч, этот пкть равен 200(х-0,5)км. Составим и решим уравнение:
180х=200(х-0,5),
180х=200х-100,
20х=100,
х=100:20,
х=5
5(ч)-время затрачееное самолетом на путь из А в В со скорость 180Км\ч.
180*5=900(км)-расстояние между А и В