Впрямоугольном треугольнике авс длина катета ав равна 6, а длина катета вс равна 8. точка d делит гипотенузу ас пополам. найти расстояние между центрами окружностей, вписанных в треугольник abd и в треугольник bcd.
Сделаем рисунок треугольника АВС. Так как АВ и ВС - катеты, угол В=90° Найдем гипотенузу АС по т. Пифагора (или просто учтем, что данный треугольник - египетский с отношением сторон 3:4:5).⇒ АС=10 Соединим В и Д. ВД - медиана прямоугольного треугольника и потому равна половине гипотенузы. ВД=5 Треугольник ВАД - равнобедренный. ВD=АD Из центра окружности О проведем к точке касания с АС отрезок ОТ, к точке касания с АВ отрезок ОР. АР=РВ: треугольник равнобедренный и центр окружности О лежит на биссектрисе ДР ( она же высота и медиана) По свойству отрезков касательных к окружности из одной точки АТ=АР=АВ:2=3 В треугольнике ВDС из центра О1 проведем отрезки к точкам касания О1Н и О1Е Треугольник ВDС - равнобедренный и центр окружности О1 лежит на биссектрисе DН ( она же высота и медиана) ВН=НС=ВС:2=4 По свойству отрезков касательных к окружности из одной точки НС=ЕС=4 ТЕ=АС-АТ-СЕ=10-3-4=3 По формуле радиуса вписанной в равнобедренный треугольник окружности r=(b:2)*[√(2а-b):(2a+b)] найдем радиусы ОТ и ЕО1 ОТ=3/2 ЕО1=4/3 Четырехугольник ОТЕО1 - прямоугольная трапеция с основаниями ОТ и О1Е и меньшей боковой стороной ТЕ Расстояние между центрами окружностей, вписанных в треугольник ABD и в треугольник BCD - большая боковая сторона этой трапеции. ТЕ=3 ЕО1=4/3 ТМ=3/2 Из О1 опустим высоту О1М. Треугольник О1МО - прямоугольный. МО=ТО-ЕО1=1/6 По т. Пифагора ОО1=√(ОМ²+МО1²)=√(9+1/36)=√(325/36)=(5√13):6
Так как АВ и ВС - катеты, угол В=90°
Найдем гипотенузу АС по т. Пифагора (или просто учтем, что данный треугольник - египетский с отношением сторон 3:4:5).⇒
АС=10
Соединим В и Д. ВД - медиана прямоугольного треугольника и потому равна половине гипотенузы.
ВД=5
Треугольник ВАД - равнобедренный.
ВD=АD
Из центра окружности О проведем к точке касания с АС отрезок ОТ, к точке касания с АВ отрезок ОР.
АР=РВ: треугольник равнобедренный и центр окружности О лежит на биссектрисе ДР ( она же высота и медиана)
По свойству отрезков касательных к окружности из одной точки
АТ=АР=АВ:2=3
В треугольнике ВDС из центра О1 проведем отрезки к точкам касания О1Н и О1Е
Треугольник ВDС - равнобедренный и центр окружности О1 лежит на биссектрисе DН ( она же высота и медиана)
ВН=НС=ВС:2=4
По свойству отрезков касательных к окружности из одной точки
НС=ЕС=4
ТЕ=АС-АТ-СЕ=10-3-4=3
По формуле радиуса вписанной в равнобедренный треугольник окружности
r=(b:2)*[√(2а-b):(2a+b)]
найдем радиусы ОТ и ЕО1
ОТ=3/2
ЕО1=4/3
Четырехугольник ОТЕО1 - прямоугольная трапеция с основаниями ОТ и О1Е и меньшей боковой стороной ТЕ
Расстояние между центрами окружностей, вписанных в треугольник ABD и в треугольник BCD - большая боковая сторона этой трапеции.
ТЕ=3
ЕО1=4/3
ТМ=3/2
Из О1 опустим высоту О1М.
Треугольник О1МО - прямоугольный.
МО=ТО-ЕО1=1/6
По т. Пифагора
ОО1=√(ОМ²+МО1²)=√(9+1/36)=√(325/36)=(5√13):6