Всего было 2000 золотых монет они делились на большие средние маленькие больших было 45% общего числа строение 9 20 числа больших маленьких неизвестный сколько было маленьких монет
Если при делении порядкового номера места на 4 получается целое число, то это место находится в купе, номер которого равен получившемуся числу. Если же при делении получается неполное частное, то номер купе будет на 1 (единицу) больше, чем это неполное частное. 1) 21:4=5 (ост.1)21-ое место находится в 6-ом купе 2) 15:4=3 (ост.3)15-ое место находится в 4-ом купе 3) 28:4=728-ое место находится в 7-ом купе 4) 18:4=4 (ост.2)18-ое место находится в 5-ом купе 5) 26:4=6 (ост.2)26-ое место находится в 7-ом купе, остальные номера мест в этом купе 25, 27 и 28.
ответ:
пошаговое объяснение: шаг 1: находим координаты х точек перечечения графиков y=x^2+1 и y=-x+3.
x^2+1 = -x+3; x^2+x-2 = 0; x1 = -2; x2 = 1.
шаг 2: находим определенный интеграл функции y = -x+3 в пределах от -2 до 1.
первообразная этой функции будет y = -1/2*x^2 + 3x + с
подставляя пределы интегрирования получаем площадь под функцией s1 = -1/2 + 3 + 2 + 6 = 10,5.
шаг 3: находим определенный интеграл функции y = x^2+1 в пределах от -2 до 1.
первообразная этой функции будет y = 1/3*x^3 + x + с
подставляя пределы интегрирования получаем площадь под функцией s2 = 1/3 + 1 + 8/3 +2 = 6.
шаг 4: s = s1-s2; s = 10,5-6; s = 4,5.
1) 21:4=5 (ост.1)21-ое место находится в 6-ом купе
2) 15:4=3 (ост.3)15-ое место находится в 4-ом купе
3) 28:4=728-ое место находится в 7-ом купе
4) 18:4=4 (ост.2)18-ое место находится в 5-ом купе
5) 26:4=6 (ост.2)26-ое место находится в 7-ом купе, остальные номера мест в этом купе 25, 27 и 28.