В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bbll1998
bbll1998
06.01.2021 23:23 •  Математика

Вычислить, используя законы умножения

Показать ответ
Ответ:
ларводаны
ларводаны
08.10.2022 08:20
Функция f(x)=3x²-x³
1. Область определения - нет ограничений D(f) = R.
2.Точки пересечения графика с осями координат.
При х = 0, у = 0  точка пересечения с осью Оу.
При 3x²-x³ = 0, x²(3 - х) = 0 есть 2 точки пересечения с осью Ох: х = 0 и х = 3.
3.Промежутки возрастания и убывания.
Находим производную функции и приравниваем её 0:
f'(3x²-x³) = 6x - 3x² = 3x(2 - x) = 0.
Нашли 2 критические точки:
х = 0  и х = 2.
Находим знаки производной вблизи критических точек:
х =                 -0.5     0     1.5      2        2.5
у' =6x - 3x² = -3.75    0     2.25    0       -3.75 .
Где производная отрицательна - там функция убывает, где производная положительна - функция возрастает.
x < 0 и  x > 2  функция убывает,
0 < x < 2 функция возрастает.

4.Экстремумы видны по пункту 3. Где производная меняет знак с - на + там минимум, где с + на - там максимум:
х = 0 минимум, х = 2 максимум.


С: с 1) исследуйте функцию f(x)=3x2-x^3 по следующей схеме: 1. область определения. 2.точки пересече
0,0(0 оценок)
Ответ:
ambasaddor
ambasaddor
25.08.2022 07:17
Лучше сформулировать не "с вероятностью 0,99", а "с вероятностью не менее 0,99".

Все-таки считается, что случайная величина Х - отклонение размера детали от номинала - распределена нормально с указанными параметрами. 
Тогда можно найти вероятность того, что наугад взятая деталь окажется стандартной:
P(|X-0|<4)=2Ф(4/8)=2Ф(1/2)=0.383 (из таблицы функции Лапласа).

Пришли к такой стандартной задаче: Событие А (деталь стандартна) имеет вероятность 0.383. Сколько необходимо провести испытаний, чтобы с вероятностью не менее 0.99 это событие появилось хотя бы один раз. Это можно вычислить либо по формуле Бернулли, либо по формуле вероятности появления хотя бы одного из независимых событий. Если это число раз обозначить n, то для этого n получим неравенство:
1-(1-0.383)^n > 0.99 или 0.617^n < 0.01
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота