С учетом ОДЗ уравнение всегда имеет как минимум один корень - решение уравнения √x - 9 = 0 ⇔ √х = 9 ⇒ x = 81.
Однако при некоторых значениях а уравнение может иметь и другой корень - решение уравнения х - а = 0 ⇒ х = а. Это возможно в том случае, если этот корень удовлетворяет ОДЗ, т.е. есть х ≥ 0 ⇒ a ≥ 0. Но может случиться так, что корни совпадут (и в первой скобке, и во второй корнем будет х = 81), и в итоге у нас все так же будет одно решение.
Поэтому уравнение может иметь единственное решение только в двух случаях:
1) уравнения х - а = 0 и √x - 9 = 0 имеют одинаковое решение - х = 81. Этому случаю соответствует значение а = 81.
2) если уравнение х - а = 0 имеет решения, которые не удовлетворяют ОДЗ, т.е. такие, при которых x выходит < 0 (в этом случае уравнение не будет иметь смысла из за того, что под корнем будет отрицательное число). Этому случаю соответсвуют все значения а < 0.
Решение C={треугольник, m, 5} C={треугольник, 5, m} C={ 5, m, треугольник} C={ 5, треугольник, m} C={ m, треугольник, 5).
Данные множества равные множеству C={ m, 5 треугольник}. Пояснения. Два множества A и B называются равными, если они состоят из одних и тех же элементов, т. е. если каждый элемент множества A принадлежит B и, обратно, каждый элемент B принадлежит A. Например, множество из трех элементов a, b, c допускает шесть видов записи:
ответ: a ∈ (-∞; 0)∪{81}
Пошаговое объяснение: ОДЗ: x ≥ 0
С учетом ОДЗ уравнение всегда имеет как минимум один корень - решение уравнения √x - 9 = 0 ⇔ √х = 9 ⇒ x = 81.
Однако при некоторых значениях а уравнение может иметь и другой корень - решение уравнения х - а = 0 ⇒ х = а. Это возможно в том случае, если этот корень удовлетворяет ОДЗ, т.е. есть х ≥ 0 ⇒ a ≥ 0. Но может случиться так, что корни совпадут (и в первой скобке, и во второй корнем будет х = 81), и в итоге у нас все так же будет одно решение.
Поэтому уравнение может иметь единственное решение только в двух случаях:
1) уравнения х - а = 0 и √x - 9 = 0 имеют одинаковое решение - х = 81. Этому случаю соответствует значение а = 81.
2) если уравнение х - а = 0 имеет решения, которые не удовлетворяют ОДЗ, т.е. такие, при которых x выходит < 0 (в этом случае уравнение не будет иметь смысла из за того, что под корнем будет отрицательное число). Этому случаю соответсвуют все значения а < 0.
Итого: a ∈ (-∞; 0)∪{81}.
C={треугольник, m, 5}
C={треугольник, 5, m}
C={ 5, m, треугольник}
C={ 5, треугольник, m}
C={ m, треугольник, 5).
Данные множества равные множеству
C={ m, 5 треугольник}.
Пояснения.
Два множества A и B называются равными, если они состоят из одних и тех же элементов, т. е. если каждый элемент множества A принадлежит B и, обратно, каждый элемент B принадлежит A.
Например, множество из трех элементов a, b, c допускает шесть видов записи:
{a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}.