пусть х м - длина основания равнобедренного треугольника, где x> 0, тогда длина боковой стороны этого же равнобедренного треугольника по условию равна 12х м, т.к. периметр этого треугольника равен 10 м по условию, получаем уравнение:
х+12х+12х=10
25х=10
х=0,4
значит, 0,4 м - длина основания.
ответ: 0,4 м.
теорема пифагора: , где с - гипотенуза, а а и b - катеты прямоугольного треугольника.
к равнобедренному треугольнику она не относится (исключение составляет если основание равнобедренного треугольника является гипотенузой прямоугольного треугольника, т.е. угол, лежащий против основания равнобедренного треугольника - прямой, т.е. равен ).
Решение:Число 34953495 разложим на множители таким образом, чтобы остаток от разложения состоял из чисел 22, 33, 44 и 55 (т.к. только такие оценки ставит учитель). 3495=3⋅5⋅2333495=3⋅5⋅233, при этом оценки 233233 не бывает, но оно записано в виде ряда оценок 22, 33 и 33.
Таким образом, получается ряд оценок 33, 55, 22, 33 и 33 (как и по условию у нас оценок получилось 55 штук). Найдем среднее арифметическое данных оценок 3+5+2+3+35=3,23+5+2+3+35=3,2, округлив до целого получим оценку 3.
пусть х м - длина основания равнобедренного треугольника, где x> 0, тогда длина боковой стороны этого же равнобедренного треугольника по условию равна 12х м, т.к. периметр этого треугольника равен 10 м по условию, получаем уравнение:
х+12х+12х=10
25х=10
х=0,4
значит, 0,4 м - длина основания.
ответ: 0,4 м.
теорема пифагора: , где с - гипотенуза, а а и b - катеты прямоугольного треугольника.
к равнобедренному треугольнику она не относится (исключение составляет если основание равнобедренного треугольника является гипотенузой прямоугольного треугольника, т.е. угол, лежащий против основания равнобедренного треугольника - прямой, т.е. равен ).
Таким образом, получается ряд оценок 33, 55, 22, 33 и 33 (как и по условию у нас оценок получилось 55 штук). Найдем среднее арифметическое данных оценок 3+5+2+3+35=3,23+5+2+3+35=3,2, округлив до целого получим оценку 3.
ответ: 3.