Пусть расстояние между пунктами А и В равно S км, скорость первого (из А) х км/ч, второго - у км/ч. Первый полпути за (S/2)/x часов. За это время второй у=S*y/(2*x) км. Eму осталось пройти S-S*y/(2*x)=S*(2*x-y)/(2*x) км . S*(2*x-y)/(2*x)=24 (1). Второй полпути за (S/2)/у часов. За это время первый у)*х=S*х/(2*у) км Eму осталось пройти S-S*х/(2*у)=S*(2*у-х)/(2*у) км S*(2*у-х)/(2*у)=15 (2). Поделим почленно уравнение (1) на уравнение (2), получим (2*x-y)/(2*у-х)=1,6*х/у. Поделим числитель и знаменатель последнего уравнения на у, и обозначим х/у=a. (2*a-1)/(2-a)=1,6*a 2*a-1=3,2*a-1,6*a^2 1,6*a^2-1,2*a-1=0 8*a^2-6*a-5=0 a1=(3/8)+√(9/64+5/8)=5/4 a2=(3/8)-√9/64+5/8)=-1/2 не удов усл х/у=5/4 или у=0,8*х. Подставив это в уравнение (1) или (2) получим S=40 км. Когда первый полпути, второй км. Когда первый дойдет до пункта В, второму останется пройти до А 24-16=8 км.
Числа делятся на 15 если они делятся на 3 и на 5. Число делится на 3, если его сумма чисел делится на 3. Число делится на 5, если оно заканчивается на 0 или на 5. Таким образом, число делится на 15 если его сумма чисел делится на 3 и оно заканчивается на 0 или на 5. Первое трехзначное число, которое делится на 15 это 105, следующее 120, 135 и т.д., последнее 990. Такие числа образуют арифметическую прогрессию и разностью 15. a₁=105, , d=15 Найдем n.
990=105+15(n-1) 15 (n-1)=885 n-1=59 n=60 Надо найти сумму первых 60 членов арифметической прогрессии
Первый полпути за (S/2)/x часов.
За это время второй у=S*y/(2*x) км.
Eму осталось пройти S-S*y/(2*x)=S*(2*x-y)/(2*x) км .
S*(2*x-y)/(2*x)=24 (1).
Второй полпути за (S/2)/у часов.
За это время первый у)*х=S*х/(2*у) км
Eму осталось пройти S-S*х/(2*у)=S*(2*у-х)/(2*у) км
S*(2*у-х)/(2*у)=15 (2).
Поделим почленно уравнение (1) на уравнение (2), получим (2*x-y)/(2*у-х)=1,6*х/у.
Поделим числитель и знаменатель последнего уравнения на у, и обозначим х/у=a.
(2*a-1)/(2-a)=1,6*a
2*a-1=3,2*a-1,6*a^2
1,6*a^2-1,2*a-1=0
8*a^2-6*a-5=0
a1=(3/8)+√(9/64+5/8)=5/4
a2=(3/8)-√9/64+5/8)=-1/2 не удов усл
х/у=5/4 или у=0,8*х.
Подставив это в уравнение (1) или (2) получим S=40 км.
Когда первый полпути, второй км.
Когда первый дойдет до пункта В, второму останется пройти до А 24-16=8 км.
Первое трехзначное число, которое делится на 15 это 105, следующее 120, 135 и т.д., последнее 990.
Такие числа образуют арифметическую прогрессию и разностью 15.
a₁=105, , d=15
Найдем n.
990=105+15(n-1)
15 (n-1)=885
n-1=59
n=60
Надо найти сумму первых 60 членов арифметической прогрессии