В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
лолер2
лолер2
29.07.2021 07:08 •  Математика

ВЫСШАЯ МАТЕМАТИКА. Используя формулы Бернулли и Пуассона, решить следующую задачу.
Прививка от гриппа даёт положительный результат в 70% случаев. Найти вероятность,что в группе из 15 человек более,чем для двух, она будет бесполезной. ​

Показать ответ
Ответ:
polinayac
polinayac
25.01.2024 23:12
Добрый день!

Чтобы решить эту задачу, мы воспользуемся формулами Бернулли и Пуассона.

Формула Бернулли позволяет нам вычислять вероятность успеха (в данном случае, положительного результата прививки от гриппа) в определенном количестве независимых испытаний (количество человек в группе). Формула имеет следующий вид:

P(k) = C(n, k) * p^k * (1-p)^(n-k),

где P(k) - вероятность, что произойдет k успешных результатов в n испытаниях, C(n, k) - количество сочетаний из n по k, p - вероятность одного успешного испытания, (1-p) - вероятность неуспешного испытания.

В нашей задаче, n = 15 (количество людей в группе), p = 0.7 (вероятность положительного результата прививки), и мы хотим найти вероятность P(k), где k > 2 (вероятность бесполезности прививки).

Однако, чтобы применить формулу Бернулли, нам нужны значения P(3), P(4), ... , P(15), но вычислять каждую из этих вероятностей вручную достаточно трудоемко. В таких случаях, мы можем воспользоваться формулой Пуассона, которая позволяет нам приближенно вычислить эти вероятности.

Формула Пуассона имеет следующий вид:

P(k) ~ (e^(-λ) * λ^k) / k!,

где λ = n * p - математическое ожидание или среднее число успешных результатов в n испытаниях. В нашем случае, λ = 15 * 0.7 = 10.5.

Теперь мы можем пошагово решить задачу:

1. Вычислим вероятность P(k) для k > 2, используя формулу Пуассона:
P(k) = (e^(-10.5) * 10.5^k) / k!.

2. Найдем сумму всех таких вероятностей:
P(>2) = P(3) + P(4) + ... + P(15).

3. Применим формулу Пуассона для каждого значения k, начиная с k = 3. Вычислим вероятность P(k) для каждого k и найдем их сумму.

Очень важно отметить, что формулы Бернулли и Пуассона являются лишь приближением и используются для расчета вероятностей в больших выборках или при большом количестве испытаний. В реальной жизни, вероятность может отличаться от вычисленной с помощью этих формул.

Надеюсь, данное объяснение поможет вам понять и решить задачу. Если у вас возникнут еще вопросы, не стесняйтесь задавать!
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота