В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
KMasha11
KMasha11
26.05.2023 10:13 •  Математика

Y=x^4/x^4+1 ( от - бесконечности до + бесконечности

Показать ответ
Ответ:
kristina231220
kristina231220
01.10.2020 21:57
Упростим дробь, для чего разделим числитель на знаменатель.
x^4/(x^4+1) = 1-1/(x^4+1).
Анализируем полученную функцию на экстремумы, для чего нужно отыскать точки, где первая производная обращается в ноль.
Находим производную функции: 4x^3/(x^4+1)^2.
Она обращается в ноль в единственной точке х=0.
Проверим, что достигается в этой точке - максимум, или минимум.
Анлизируем знак второй производной при х=0.
Находим вторую производную: -32x^6/(x^4+1)^3+12x^2/(x^4+1)^2
При х=0 вторая производная обращается в ноль, следовательно точка х=0 может и не быть точкой экстремума.
Проанализируем поведение функции y=1-1/(x^4+1) в окрестности точки х=0
Вследствие четной степени х функция является четной, т.е. её значение не зависит от знака х. При х=0 значение функции равно 0. При х=1 значение функции равно 1/2. При х=2 значение функции равно 8/9 и.т.д. Т.е. мы видим, что с ростом х значение функции растет. При х, стремящемся к бесконечности, значение функции стремится к 1 (значение дроби 1/(х^4+1) стремится к нулю).
Поэтому в точке х=0 мы имеем минимум.
Максимум функции достигается при плюс и минус бесконечности., поэтому можно говорить, что функция максимума не имеет.
 
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота