распределительное. распределительное свойство применяется только относительно сложения. распределительное свойство гласит: если число умножается на сумму, то можно каждое из слагаемых умножить на это число, а результаты сложить.
сочетательное.
сочетательное свойство говорит о том, что при перемножении трех и более чисел, можно перемножить два первых числа, а результат использовать дальше в качестве множителя. то есть 3*4*5=12*5=60
переместительное. переместительное свойство гласит, от перемены мест множителей произведение не меняется.
распределительное свойство может применяться и относительно вычитания или деления. с этого свойства раскрывают скобки в примерах при необходимости.
переместительное свойство
правильное использование определения переместительного свойства умножения может увеличить скорость счета. к сожалению, специальных правил группировки нет. нужно полагаться только на собственный опыт и логику. рассмотрим небольшой пример, чтобы показать применение свойства на практике:
((15*25*7*3: 125)-3): 12 – в этом примере можно только правильно сгруппировав произведение в скобках для ускорения деления. для этого представим число 15 в виде произведения 3*5
((15*25*7*3: 125)-3): 12=((5*3*25*7*3: 125)-3): 12 теперь перемножим 5 и 25, выполним деление произведения на число. для этого можно только один из множителей разделить на это число, а потом результат использовать, как один из множителей.
без переместительного свойства не удалось бы правильно сгруппировать множители, а значит пришлось бы считать пример полностью, что отняло бы большое количество времени
х - количесво провода в начале х-36 первый моток х-16 второй моток это в первом мотке осталось провода в 2 раза меньше, чем во втором ,умножаем первый моток на 2 чтобы получилось равенство 2 (х-36) = х-16 2х-72 = х-16 х = 16 +72 х = 56 метров провода было в каждом мотке сначала Без иксов не знаю , а с иксом как то так
ответ:
распределительное. распределительное свойство применяется только относительно сложения. распределительное свойство гласит: если число умножается на сумму, то можно каждое из слагаемых умножить на это число, а результаты сложить.
сочетательное.
сочетательное свойство говорит о том, что при перемножении трех и более чисел, можно перемножить два первых числа, а результат использовать дальше в качестве множителя. то есть 3*4*5=12*5=60
переместительное. переместительное свойство гласит, от перемены мест множителей произведение не меняется.
распределительное свойство может применяться и относительно вычитания или деления. с этого свойства раскрывают скобки в примерах при необходимости.
переместительное свойство
правильное использование определения переместительного свойства умножения может увеличить скорость счета. к сожалению, специальных правил группировки нет. нужно полагаться только на собственный опыт и логику. рассмотрим небольшой пример, чтобы показать применение свойства на практике:
((15*25*7*3: 125)-3): 12 – в этом примере можно только правильно сгруппировав произведение в скобках для ускорения деления. для этого представим число 15 в виде произведения 3*5
((15*25*7*3: 125)-3): 12=((5*3*25*7*3: 125)-3): 12 теперь перемножим 5 и 25, выполним деление произведения на число. для этого можно только один из множителей разделить на это число, а потом результат использовать, как один из множителей.
*25)*3*7*3: 125)-3): 12=((125*3*7*3: 125)-3): 12=(3*3*7-3): 12=(9*7-3): 12=(63-3): 12=60: 12=5
без переместительного свойства не удалось бы правильно сгруппировать множители, а значит пришлось бы считать пример полностью, что отняло бы большое количество времени