tg∠A = 3/4
Пошаговое объяснение:
Рисунок прилагается.
Дано: ΔABC; ∠C = 90°; BC = 10; высота CH = 8.
Найти tg∠A.
Так как CH высота, то ∠CHB = 90° ⇒ ΔCHB прямоугольный (его гипотенуза CB = 10, катет CH = 8).
Из ΔCHB по т.Пифагора найдем катет BH.
BH = √(CB² - CH²) = √(10² - 8²) = √(100 - 64) = √36 = 6.
BH = 6.
ΔABC и ΔCHB подобны по двум углам: ∠B общий, ∠ACB = ∠CHB = 90° по условию. У подобных треугольников соответствующие углы равны.
⇒ ∠CAB = ∠BCH;
tg∠CAB = tg∠BCH = BH / CH = 6/8 = 3/4 (тангенс в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему катету).
tg∠A = 3/4.
tg∠A = 3/4
Пошаговое объяснение:
Рисунок прилагается.
Дано: ΔABC; ∠C = 90°; BC = 10; высота CH = 8.
Найти tg∠A.
Так как CH высота, то ∠CHB = 90° ⇒ ΔCHB прямоугольный (его гипотенуза CB = 10, катет CH = 8).
Из ΔCHB по т.Пифагора найдем катет BH.
BH = √(CB² - CH²) = √(10² - 8²) = √(100 - 64) = √36 = 6.
BH = 6.
ΔABC и ΔCHB подобны по двум углам: ∠B общий, ∠ACB = ∠CHB = 90° по условию. У подобных треугольников соответствующие углы равны.
⇒ ∠CAB = ∠BCH;
tg∠CAB = tg∠BCH = BH / CH = 6/8 = 3/4 (тангенс в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему катету).
tg∠A = 3/4.
v + v₀ - скорость баржи по течению весной
v - v₀ - скорость баржи против течения весной
v + v₀ - 1 - скорость баржи по течению летом
v - v₀ + 1 - скорость баржи против течения летом
Тогда: { v + v₀ = 5(v - v₀)
{ v + v₀ - 1 = 3(v - v₀ + 1)
{ v =1,5v₀
{ 1,5v₀ + v₀ - 1 = 4,5v₀ - 3v₀ + 3
2,5v₀ - 1,5v₀ = 4
v₀ = 4 (км/ч) - скорость течения весной
v + 4 - 1 = 3(v - 4 + 1)
v + 3 = 3v - 9
12 = 2v
v = 6 (км/ч) - скорость баржи
ответ: скорость течения весной - 4 км/ч.