А) n^4+64=(n^2)^2 + 2*n^2*8 + 8^2 - 2*n^2*8=(n^2+8)^2-(4n)^2= (n^2-4n+8)*(n^2+4n+8) При n>0 n^2-4n+8 < n^2+4n+8. Поэтому если n^2-4n+8 > 1, то n^2+4n+8 > 1, а все произведение - составное число. n^2-4n+8>1 достигается при любых значениях n: n^2-4n+7>0 D=(-4)^2-4*7=-12<0 Причем n^2-4n+8=1 ни при каких n. Таким образом, n^4+64 является составным при любых натуральных n. б) n^4+n^2+1=n^4+2n^2+1-n^2=(n^2+1)^2-n^2=(n^2-n+1)(n^2+n+1) При n > 0 n^2-n+1<n^2+n+1. Рассмотрим случай, когда n^2-n+1=1. n^2-n=0, n=0 или n=1. Соответственно, при n=1 n^4+n^2+1=(1^2-1+1)(1^2+1+1)=3 - простое число. n=1 не подходит. Если n^2-n+1>1, n > 1 - каждая из скобок больше 1. То есть произведение этих скобок дает составное число. Таким образом, n^4+n^2+1 является составным для всех натуральных n, кроме 1.
Проведём в равнобедренном треугольнике высоту к его основанию. Высота в прямоугольом треугольнике является также и медианой (делит основание пополам), и биссектрисой (делит угол пополам). Получилось два одинаковых прямоугольных треугольников с одним углом в 30° и гипотенузой, равной 18 м. Если в прямоугольном треугольнике есть угол, равный 30°, то противолежащий этому углу катет равен половине гипотенузы. Значит, высота равнобедренного треугольника равна половине его боковой стороны:
h = 18 / 2 = 9 м.
Найдём неизвестный катет в прямоугольном треугольнике по теореме Пифагора:
(n^2-4n+8)*(n^2+4n+8)
При n>0 n^2-4n+8 < n^2+4n+8. Поэтому если n^2-4n+8 > 1, то n^2+4n+8 > 1, а все произведение - составное число.
n^2-4n+8>1 достигается при любых значениях n:
n^2-4n+7>0
D=(-4)^2-4*7=-12<0
Причем n^2-4n+8=1 ни при каких n.
Таким образом, n^4+64 является составным при любых натуральных n.
б) n^4+n^2+1=n^4+2n^2+1-n^2=(n^2+1)^2-n^2=(n^2-n+1)(n^2+n+1)
При n > 0 n^2-n+1<n^2+n+1.
Рассмотрим случай, когда n^2-n+1=1.
n^2-n=0,
n=0 или n=1.
Соответственно, при n=1 n^4+n^2+1=(1^2-1+1)(1^2+1+1)=3 - простое число. n=1 не подходит.
Если n^2-n+1>1, n > 1 - каждая из скобок больше 1. То есть произведение этих скобок дает составное число.
Таким образом, n^4+n^2+1 является составным для всех натуральных n, кроме 1.
140√83 м²
Объяснение:
Проведём в равнобедренном треугольнике высоту к его основанию. Высота в прямоугольом треугольнике является также и медианой (делит основание пополам), и биссектрисой (делит угол пополам). Получилось два одинаковых прямоугольных треугольников с одним углом в 30° и гипотенузой, равной 18 м. Если в прямоугольном треугольнике есть угол, равный 30°, то противолежащий этому углу катет равен половине гипотенузы. Значит, высота равнобедренного треугольника равна половине его боковой стороны:
h = 18 / 2 = 9 м.
Найдём неизвестный катет в прямоугольном треугольнике по теореме Пифагора:
a² + b² = c²;
a² + 9² = 18²;
a² + 81 = 324;
a² = 243;
a = √243.
Найдём основание равнобедренного треугольника:
2 * а = 2√243;
Найдём площадь треугольника:
S = 1/2 * 9 * 2√243 = 4,5 * 2√243 = 9√243 = √(81 * 243) = √19683 = 140√83 м².
ответ: 140√83 м²